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Abstract
In a Search & Rescue scenario, a first responder’s (FR) spoken description can be
viewed as a verbal annotation of the incident scene. This paper presents a method
for interpreting such descriptions as a topological representation of the incident
scene. However, in contrast to a traditional approach using units of meaning, our
approach uses a topic-based perspective since it offers the potential of being robust
to high error rates in the automatic recognition of noisy speech. We thus frame the
landmark detection problem in topological mapping as a topic segmentation task.
New nodes are introduced to the map by identifying the changes in the content of
spoken reports as an indication that the speaker has moved from one location to
another, and text vectorization techniques are used to compute the correspondence
between pairs of nodes and to estimate the topological map. A goal-oriented hu-
man/human conversational corpus was collected involving spoken communication
between a FR and a task leader in a simulated search environment. Experiments on
manual and automatic transcriptions with different levels of word error rate confirm
the low sensitivity of this method to highly imperfect speech recognition output.

1 Introduction
Whilst spoken language understanding (SLU) mainly refers to the understanding of voice enquiries
to personal assistants, interpreting human/human voice communications and integrating the out-
comes with relevant information sources is a clear need for applications such as Search and Rescue
(SAR) operations. Speech is the single most important source of situational information during crisis
response. It is widely used for transferring critical information about the incident scene between First
Responders (FR) and Task Leaders (TL) [1]. Automatic extraction and integration of these informa-
tion into the central information management system has the potential for reducing the risk of human
related errors in large and fast moving SAR operations. The importance of such automatic estima-
tions based on speech communications has been envisaged in the observational-speech-system [2].
Yet, technical difficulties such as high word error rate (WER) in automatic speech recognition (ASR)
transcripts and understanding spontaneous human/human communications present major challenges
for implementing such a system.
Reliable information about the lay of the land is known to be one of the main enhancing factors for
situation awareness within the SAR context [3]. In general the internal representation of a physical
environment can be classified as metric-based or Topological-based maps (T-map) [4]. While a met-
ric map represents the geometric entities of an environment as exact locations, a T-map represents
the structure of a physical environment as an abstract graphical model consisting of nodes and edges
[4, 5]. Estimation of a metric-map from spoken reports requires highly sophisticated ASR and SLU
systems for interpreting detailed information about the location of environmental entities. Prior to
this challenge, it is also very unlikely to find detailed metric information in FRs’ explanations which
are generally about main locations and events during the explore (search) phase. The topological
representation methodology is similar to the environmental perception and interpretation of human
beings [6] which makes it more applicable in the speech-based mapping problem. Followed by our
previous work in estimating FRs’ location based on their spoken reports [7], this paper presents a
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speech-based T-map estimation approach based on the automatic transcripts of speech communica-
tions in a simulated SAR scenario.
The explanations of FRs about their observations and actions are highly associated with their loca-
tion. We have shown that [7], topic segmentation techniques can provide an estimation about when
the FR has moved from one room into another. Looking from a topic segmentation perspective and
utilizing the watershed+Vectorization segmentation technique for a 1D signal [8] provided a sig-
nificant amount of robustness to the high WER in ASR transcripts of spontaneous human/human
spoken language communications. Here we thus frame the landmark detection problem in T-map
building as a topic segmentation task. New vertices are introduced to the graph of the T-map by
identifying the changes in the content of FRs’ spoken reports as an indication to that the speaker
has moved from one particular location to another. The correspondence between pairs of nodes is
estimated by first describing their entire segment of utterances in the vector space model (VSM)
and then computing the cosine similarity of their vectors as a measure of their correspondence. The
entire segment is comparing in VSM in order to reduce the perceptual aliasing posed by the ASR
errors and improve the distinctiveness of nodes.
Experiments on the manual and automatic transcriptions with different levels of WER (32.4% &
41.6%) confirm the low sensitivity of this method to highly imperfect speech recognition output. The
results show the capability of this system in extracting on average 52.52% of the total information
content of the spoken report about the structure of the environment on manual transcriptions and on
average 45.15% and 43.46% on clean and noisy speech data respectively.

2 Topological environmental modelling
T-maps have been mainly studied by cognitive theories of space [6] and mobile-robot mapping [4].
The standard definition of a T-map [5], describes it as a graph which its vertices or nodes represent
certain distinguishable places in the environment (landmarks) and the edges or links between them
indicate the connections between their corresponding locations. In contrast to metric-maps, these
light-weight maps can represent higher-level of semantic knowledge such as objects and semantic
labelling about the environment.
Automatic T-map building is a well explored area mainly in the field of mobile-robot mapping
[4]. As the robot agent explores, it perceives the environment through its sensors. One of the
main issues in T-mapping is to detect when a new node should be added in the map. Some of
the existing approaches place nodes periodically in either space (displacement) or in time intervals.
In some other strategies, a new node is introduced whenever an important change is detected in
the environment indicating that the agent has moved to a new location. This form of landmark
detection produces a more compact topology which the nodes can represent higher level of semantic
knowledge. Numerous types of range-finder sensors and vision-based methods have been employed
in the literature to interpret the environment and identify these topological landmarks [4].
In this process, a sequence of nodes is generated as the agent explores the environment. At this
stage, building a T-map is reduced to determining whether each node in this sequence is a new one
or one that has been visited previously. This involves matching the recently added node to previously
detected ones which is also known as the correspondence problem in T-mapping. Solving the corre-
spondence problem is made difficult due to perceptual aliasing in the environment in which different
places may have similar appearance or they may look similar to the system. In another situation, due
to perceptual variability, a single place visited two times can appears distinct to the system. This
may occur because of the viewpoint or illumination effects among other causes. Failure to assess the
correspondence between landmarks accurately, increases the ambiguity of the T-map [9]. Current
mapping algorithms mostly solve correspondence problem by matching low-level sensor-specific
features. Although several approaches [10] (among others) have been introduced for choosing the
right matches for each node and deciding on the best topological hypothesis, a robust way of dealing
with unknown correspondences is to delay decision making and maintain the probabilities of loop
closing [11]. It is frequently used in vision-based loop closing [12, 13, 14] which the perceptual
aliasing and variability are generally higher.

3 Topic segmentation
Topic segmentation is an essential step in understanding and information retrieval tasks. It has
been approached in many different ways and most of them are sharing the use two basic insights
either individually or in combination. The first is that, a change in topic will be associated with the
introduction of a new vocabulary [15]. This is because when people talk about different topics, they
discuss different sets of concepts and they use words relevant to those concepts. The second basic
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insight is that there are distinctive boundary features between topics. This is mainly because of the
fact that the speaker tends to signal to the audience about switching from one topic to another by
using various words/phrases or prosodic cues [16, 17, 18]. The advantage of using these boundary
features is that they are generally independent of the subject matter and they can be used to estimate
the boundaries more accurately in comparison to content-based techniques.
Different approaches have been introduced both for content-based and boundary-based. The TEXT-
TILING system [19] proposed to use a computation of similarity. It is inspired from the classical
approaches in the information retrieval domain such as TF-IDF. In TEXT-TILING system the con-
tent of a sliding window is compared before and after each possible boundary. Significant local
minima in the lexical cohesion were considered as an indication for topic boundaries. The segment-
ing task in the SEGMENTER [20] is defined as finding the boundaries on a representation of text
as weighted lexical chains. Utiyama and Isahara [21] applied a HMM based statistical approach to
measure lexical cohesion with the help of language modelling. DotPlotting [22] used clustering on
the similarity matrix between candidate segments. To decide if the topic has changed or not, these
approaches rely on word repetition for computing some kind of similarity.
Segmentation task on different genres of speech can be more challenging depending on the structure
of the discussion. A human-human spontaneous dialogue is generally much less well-structured
and topics can be revisited or interleaved. ASR WER is also significantly higher on spontaneous
speech, and all these make this segmentation task more difficult in comparison to more constrained
genres such as monologue [23]. In order to deal with short segments with very few common words,
Guinaudeau et al [24] integrated the semantically related terms to the HMM segmentation model
to extend the description of the possible segments. Claveau and Lefevre [8] introduced the Vector-
ization technique which makes it possible to match text segments that do not share common words.
This is especially useful when dealing with high WER in ASR transcripts. They also adopted the
watershed transform which is a famous morphological method for image segmentation [25] and
achieved a high quality of segmentation on transcripts of TV broadcasts.

4 Experimental data
A goal-oriented two-party human/human conversational speech corpus (SSAR corpus) was made
based on an abstract communication model between FR and TL during search process in a simulation
environment. In this model, FRs goal is to explore the environment and report their observations
back to the TL. The recording set-up is visualized in Figure 1. In this arrangement, FR and TL
were located in separate quiet rooms. TL could hear FR’s reports and in the same fashion, he was
also able to talk back for asking or confirming the required information. Given pen and paper and
just relying on the FR explanations, the TL was asked to make an estimation about structure of the
simulation environment by drawing circles to represent rooms and lines between them to show who
they may connected to each other. Inspired from simulation training systems which are being used
by some fire departments, a simulated indoor environment was designed.

Figure 1: Left: The recording scenario, Right: The recording set-up in two separate quiet rooms.

Four different simulated environment settings were designed in order to have multiple levels of
complexity and difficulty. The topological structure of these four map settings are shown in Figure 2
(left). The top-view of the Map4 settings as an example is also presented on the right. Each map
setting consists of 8 rooms. While all the rooms have an identical square shape, different objects
and arrangements inside them gives a unique identity to each. Some maps have multiple rooms with
the same type; for example Map2 has two different bedrooms. In total 13 different types of indoor
locations (RoomTypes) such as kitchen, bedroom or computer-lab were simulated in all four map
settings. Different types of ambient noises (fire noise, home appliance noise e. g. washing machine)
were also simulated which the FR (and also TL) could hear by approaching to the source. Recordings
were performed in two separate quiet rooms for avoiding external acoustic disturbances. The two
speakers’ voice and the environment noise were recorded on separate channels. For annotation
purposes, other information about locations and actions of the FR inside the simulated environment
was also logged in a computer readable text file.
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010203040Figure 2: Left: The topological structure of four different map settings which were explored by each
participant. Right: Top view of the Map4 with the motion trajectory of a participant.

In total 24 native speakers of British English with southern accent (66.6% Male) participated as paid
volunteers recruited through the Sheffield-student-volunteers system. Each participant explored all
four map settings which means 96 individual recordings were performed. Majority of the partici-
pants in the role of FR explored all the rooms in each map. Although there were about 12.5% who
couldn’t managed to visit all the rooms in the limited time, in all experiments, the topological struc-
ture of the visited parts of the environment was correctly estimated by the participants in the role
of TL. This confirms that, the amount of exchanged information through voice channel is sufficient
for a human subject to estimate the structure the visited parts of the environment. Therefore, the
topological structure related to the visited parts in each recording-set is considered as the ground
truth map. Each recording has an average length of ≈ 7.25 minutes. The corpus contains 12 hours
of conversational speech with word level manual annotations.

5 Speech-based topological map estimation
The speech-based approach for T-map estimation is designed based on the main principle of T-map
making by first, detecting when a new node should be added in the map and then, estimating the
correspondence of the recently added node to the previous ones.

5.1 New node detection
Here, the landmark detection approach is used for introducing new nodes into the map. We have
shown that [7], looking from a topic segmentation perspective it is possible to segment FR’s spoken
reports in a way that each segment represent a particular location. It has also been shown that these
segments of the report provide enough information for estimating the FRs’ locations. Thus they
have all the characteristics required to be considered as landmarks. In this method, using the actual
transition times from the location information of the FR in the simulated environment, a transition-
pivot-document (TPD) was built from all transition-related utterances in the training dataset. This
TPD was used as a reference, and a fixed size sliding window (w=5) over the sequence of utterances
was compared against it. Using the Vectorization (~V ) principle [8], both window (ui−k:i+k) and
TPD were projected into the VSM and the cosine similarity between their vectors were computed as
follow:

D(i) = cosine
(
~V (TPD), ~V (ui−k:i+k)

)
∀i ∈ [1 : N ], k =

∣∣∣w
2

∣∣∣ (1)

An example of this similarity between the utterances of a conversation and the TPD is visualized
in Figure 3. Based on the explained watershed-based segmentation approach in [8], estimations
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Figure 3: The cosine similarity distance between the utterances of a conversation and the TPD.

about the transition times were calculated. These estimations about the transition times divide a
long sequence of utterances into smaller segments which each segment can represent a particular
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location. By allocating a node for each segment of the utterances, a sequence of nodes is gradually
formed. The utterances related to each node are then retained as the fingerprint of the location in
which the node is representing.

5.2 Correspondence matrix estimation
At this stage, building a T-map is reduced to determining whether each node in the extracted se-
quence of locations is a new one or one that has been visited by the FR previously. Here the
utterances in each segment are the main source of information for estimating the correspondence
between nodes. In this estimation, two situations can be envisaged in which the topological ambi-
guity (perceptual aliasing and perceptual variability) may occur. First, when a spoken report itself is
ambiguous. In other words, the reports themselves are not accurate enough for distinguishing two
nodes correspondence. In this situation it should also look ambiguous to the TL. However, since
the structure of the environments are correctly estimated by the listeners (TLs) in all the recordings,
the information content of each report is enough for a human subject to find its T-map correctly. In
the other situation, these explanations can appear ambiguous to the mapping system due to the ASR
errors or short segments in the segmentation. In order to reduce the perceptual aliasing posed by
the ASR errors and improve the distinctiveness of nodes, each segment of utterances is considered
as a whole and then using the Vectorisation principle, its bag of N-gram is projected into the VSM.
A larger segment of utterances contains more information with higher redundancy and the Vector-
ization technique makes this possible to match text segments that do not share common words or
contain errors. More formally, the correspondence (C) between the most recent node (xn) with all
the previously detected ones (xj) is estimated as:

Cn,j = cosine
(
~V (xn), ~V (xj)

)
∀j ∈ [1 : n− 1] (2)

Figure 4 represents an example of the estimated correspondence matrix (CN×N ) (left) for Map4
and its ground truth (right). An over segmentation can be seen on its ground truth matrix (nodes 10
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Figure 4: Left: Example of the estimated correspondence matrix for Map4, Right: its ground truth.

and 11 are representing one location). This generates short segments which may contain insufficient
data to be correctly compared with the other nodes.

5.3 Experiments
Three sets of experiments were conducted on manual transcripts and ASR transcriptions of clean
speech data and speech with the background environment noise. The ASR system used for the ex-
periments was accessed through webASR [26]. The specific system used was a 2-pass DNN-GMM-
HMM tandem system trained on 95 hours of speech from 327 British broadcasts. The language
model used was a 3-gram based on the interpolation of multiple language models trained on meet-
ing, broadcast and telephone transcripts, with a vocabulary of over 62,000 words. After an initial
pass with the speaker independent models a global CMLLR transformation was estimated for each
input file and used as a parent transform in the estimation of speaker-based MLLR transformations;
the joint CMLLR-MLLR transformations were then used in a final speaker dependent decoding. In
the task of transcribing 15 hours of multi-genre television broadcasts [27], this system achieved a
WER of 37.5%. In this experiment, this system achieved 32.4% and 41.6% WER on the clean and
noisy data respectively.
In each experiment, the K-Fold cross-validation (k=10) was used in order to divide the data into
train-dataset and test-dataset. Document vectors were produced by applying the Vectorisation
scheme and the introduced node detection and correspondence matrix estimation were applied on
the transcriptions of the speech data. The effect of errors posed by the segmentation (node detec-
tion) on the correspondence estimation was measured by comparing the overall performance of the
system on the auto-segmented transcripts with its performance on the pre-segmented transcriptions
which were provided by the actual room transition times.
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6 Results and discussion
The performance (P ) of the correspondence estimation is estimated as follow:

P =
d(R,GT )− d(C,GT )

d(R,GT )
× 100 (3)

Here the Euclidean distance (d) between the estimated correspondence matrix (CN×N ) and its
ground truth (GTN×N ) is compared against the distance of a same size random matrix (RN×N ).
This shows the fraction of obtained information from the spoken report out of its total information
content about the structure of the environment. Table 1 shows the system results on manual tran-
scripts and ASR output of the clean and noisy speech data. Depending on the topology of each

Table 1: The performance (P%) of the system on manual transcripts and ASR output of the clean
and noisy speech data.

Transcriptions Map1 Map2 Map3 Map4 Overall
Manual 73.51 38.28 50.61 47.25 52.52
ASR, clean speech 69.47 29.13 42.68 38.80 45.15
ASR, noisy speech 67.91 27.19 41.11 37.10 43.46

map-setting, the level of ambiguity in the correspondence estimation can vary. Thus, the results for
each map-setting are presented independently. For instance, in general, the estimations on Map1
were more accurate and more information were gained in comparison to other map settings (e.g.
Map2). This is because of its simple circular structure which can be explored (and explained) with
much less revisiting the rooms. It is notable in the results that, in spite of a considerable increase
in the WER, the system did not receive a high negative impact from that and it is able to extract
topological information even in such inaccurate automatic transcriptions. It is important to note

Table 2: The negative effect of segmentation error; a comparison between the overall performance
of the system on the auto-segmented transcripts and its performance on the pre-segmented transcrip-
tions using actual room transition times.

Transcriptions Auto segmented Pre-segmented Negative effect
Manual 52.52 54.49 1.97
ASR, clean speech 45.15 47.68 2.53
ASR, noisy speech 43.46 46.06 2.60

that, errors in the segmentation (node detection) can indirectly affect the correspondence estima-
tion by producing short segments. Table 2 shows the effect of such error by comparing the overall
performance of the system on the auto-segmented transcripts (Table 1) with its performance on the
pre-segmented transcriptions which were provided based on the actual room transition times. The
difference can show the negative effect of inaccurate segmentation on the overall performance which
is not increasing dramatically on transcriptions with more WER.

7 Conclusions
In this paper, we introduced a method for interpreting FRs’ spoken description as a topological rep-
resentation of the incident scene in a SAR scenario. Following the general principles of T-mapping,
a novel landmark detection was introduced by framing this problem as a topic segmentation task
on FRs’ spoken reports. The presented method introduces new nodes to the map by identifying
the changes in the content of spoken reports as an indication that the speaker has moved from one
location to another, and text vectorization techniques are used to compute the correspondence be-
tween pairs of nodes and to estimate the T-map. The experiment results on manual and automatic
transcriptions with different levels of WER confirm the low sensitivity of this method to highly im-
perfect speech recognition output. This speech-based T-map estimation system introduced a new
source of information to the field of automatic map making. T-maps are not only suitable for hu-
man comprehension but also highly flexible to be integrated with other localization and mapping
techniques such as SLAM (Simultaneous Localization and Mapping). It is anticipated that a careful
integration of this system with other mapping techniques can provide a strong multimodal approach
to this task.
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