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Abstract

Neural network models have become a recent focus of investigation in spoken
language understanding (SLU). To understand speaker intentions accurately in a
dialog, it is important to consider the sentence in the context of the surrounding
sequence of dialog turns. In this study, we use long short-term memory (LSTM)
recurrent neural networks (RNNs) to train a context sensitive model to predict se-
quences of dialog concepts from the spoken word sequences. In this model, words
of each utterance are input one at a time, and concept tags are output at the end of
each utterance. The model is trained from human-to-human dialog data annotated
with concept tags representing client and agent intentions for a hotel reservation
task. The LSTM layers jointly represent both the context within each utterance,
and the context within the dialog. The different roles of client and agent are mod-
eled by switching between role-dependent layers. To evaluate the performance
of our models, we compared label accuracies using Logistic Regression (LR) and
LSTMs. The results show 70.8% for LR, 72.4% for LR w/ word2vec, 78.8% for
context sensitive LSTMs, and 84.0% for role dependent LSTMs. We confirmed
significant improvement by using context sensitive role dependent LSTMs.

1 Introduction

Spoken language understanding (SLU) methods are used in dialog systems to estimate the intention
of user utterances obtained from an automatic speech recognition (ASR) system [1, 2]. Conventional
intention estimation approaches are either based on phrase matching, or traditional classification
methods such as boosting, support bector machines (SVM), and logistic regression(LR), using bag
of word (BoW) features as inputs.

Recently, recurrent neural networks (RNNs) have been actively investigated to utterance classifica-
tion to consider history of a word sequence in each utterance [3, 4, 5]. Furthermore, long short-term
memory (LSTM) RNNs were applied to spoken language understanding[5]. However, these models
were only used for word sequence context within an utterance without considering the broader con-
text of the sequence of utterances. One might expect that the speaker intentions of each utterance can
be more accurately inferred, especially in dialogs, if the context of the utterance within the dialog is
also taken into account. This hypothesis appears to be borne out in previous work: context sensitive
understanding using phrase matching, weighted finite state transducer-based dialog management
(WFSTDM) was previously proposed [6]. More recently, conventional RNNs considering contex-
tual information were applied to domain and intention classification [7], intention classification, and
goal estimation [8] and system response generation [9].

LSTMs are a form of RNN designed to improve learning of long-range context, and have been
shown to be effective for difficult problems [10]. In this study, we apply LSTMs to capture long-
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Figure 1: Recurrent Neural Network.
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Figure 2: LSTM cell

term characteristics over an entire dialog. Each word is input sequentially into a LSTM and concept
tags are output at the end of each utterance. To propagate contextual information through a dialog,
the activation vector of the LSTM for an utterance serves as input to the LSTM for the next utterance.
In this study, the LSTMs were trained from a human-to-human dialog corpus annotated with concept
tags which represent client and agent intentions for hotel reservation. The expressions of utterances
in the dialog corpus are characterized by each role of agent and client. In order to precisely model
the role dependent expressions, we introduce two parallel LSTM layers representing client and agent
expressions.

2 Context-sensitive SLU using LSTMs

The model we use for context-sensitive spoken language understanding is a recurrent neural network
depicted in Fig. 1. The network has an input layer that takes each input word, a projection layer
that reduces the word vector in a low-dimensional space, a hidden layer with recurrent connections
that keeps context information, and an output layer that estimates posterior probabilities of output
labels. In the hidden layer, we use a set of LSTM cells instead of regular network units. In theory,
an LSTM cell can remember a value for an arbitrary length of time due to a system of gating. The
LSTM cell contains input, forget, and output gates which determine when the input is significant
enough to remember, when it should continue to remember or forget the value, and when it should
contribute to the output value. An example of an LSTM cell is depicted in Fig. 2.
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Suppose, given a sequence of M utterances, u1, . . . , uτ , . . . , uM , each utterance consists of word
sequence wτ,1, . . . , wτ,t, . . . , wτ,Tτ

and its concept tag (or dialog act) aτ . The input vector xτ,t is
prepared as

xτ,t = OneHot(wτ,t), (1)
where word wτ,t in vocabulary V is converted by 1-of-N coding using function OneHot(w), i.e.
xτ,t ∈ {0, 1}|V|.
The input vector is projected to the D dimensional vector

x′τ,t =Wprxτ,t + bpr (2)

and fed to the recurrent hidden layer, where Wpr and bpr are the projection matrix and the bias
vector.

At the hidden layer, activation vector hτ,t is computed using the LSTM cells according to the way
of [11][12], i.e.

iτ,t = σ(Wxix
′
τ,t +Whihτ,t−1 +Wcicτ,t−1 + bi) (3)

fτ,t = σ(Wxfx
′
τ,t +Whfhτ,t−1 +Wcfcτ,t−1 + bf ) (4)

cτ,t = fτ,tcτ,t−1 + iτ,t tanh(Wxcx
′
τ,t +Whchτ,t−1 + bc) (5)

oτ,t = σ(Wxox
′
τ,t +Whohτ,t−1 +Wcocτ,t + bo) (6)

hτ,t = oτ,t tanh(cτ,t), (7)

where σ() is the element-wise sigmoid function, and iτ,t, fτ,t, oτ,t and cτ,t are the input gate, forget
gate, output gate, and cell activation vectors for the t-th input word in the τ -th utterance, respectively.
The weight matrices Wzz and the bias vectors bz are identified by the subscript z ∈ {x, h, i, f, o, c}.
For example, Whi is the hidden-input gate matrix and Wxo is the input-output gate matrix.

The output vector is computed at the end of each utterance as

yτ = softmax(WHOhτ,Tτ
+ bO), (8)

whereWHO and bO are the transformation matrix and the bias vector to classify the input vector into
different categories according to the hidden vector. softmax() is an element-wise softmax function
that converts the classification result into label probabilities, i.e. yτ ∈ [0, 1]|L| for label set L.

âτ = argmax
a∈L

yτ [a], (9)

where yτ [a] indicates the component of yτ for label a, which corresponds to label probability
P (a|hτ,Tτ

).

To inherit the context information from the previous utterances, the hidden and cell activation vectors
at the beginning of each utterance are

hτ,0 = hτ−1,Tτ−1
(10)

cτ,0 = cτ−1,Tτ−1
, (11)

where τ > 1 and h1,0 = c1,0 = 0

Figure 3 illustrates a propagation process of our context-sensitive SLU. Words are sequentially input
to the LSTM and an output label corresponding to the utterance concept at the end of the utterance,
where symbol “EOS” stands for a sentence end. This model is similar to the LSTM used in [5] for
SLU, but it considers the entire context from the beginning of the dialog, while the model in [5]
considers each utterance independently. Accordingly, the label probabilities can be inferred using
not only the sentence-level intentions but also the dialog-level context.

3 Role-dependent LSTM layers

In this study, the LSTMs were trained from a human-to-human dialog corpus annotated with concept
tags which represent client and agent intentions for hotel reservation. The expressions are charac-
terized by each role of agent and client. In order to precisely model the role dependent expressions,
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Figure 3: Propagation through time in context-sensitive SLU

role-dependent

LSTM layers

projection layer

output layer

input layer

recurrent  connections role gates

Figure 4: LSTM with role-dependent layers. The blue layer (A) corresponds to client utterance
states and the red layer (B) corresponds to agent utterance states. Role gates control which role is
active.

two parallel LSTM layers representing client and agent expressions are incorporated in the model as
shown in Fig. 4.

The two LSTM layers have different parameters depending on the speaker roles. The input vector is
thus processed differently by the left layer for the client’s utterances, and by the right layer for the
agent’s utterances. The active role for a given utterance is controlled by a role variable R, which
is used to gate the output of each LSTM layer. The gated output then passes both to the recurrent
LSTM inputs and to the output layer. The recurrent LSTM inputs thus receive the output from
the role-dependent layer active at the previous frame, allowing for transitions between roles. Error
signals in the training phase are also back-propagated through the corresponding layers. Here, we
assume that the role of each speaker does not change during a dialog and it is known which speaker
uttered which utterance. However, the model structure leaves open the possibility of dynamically
inferring the roles. Accordingly, we can compute the activation at the output layer as

yτ = softmax
(
δR,Rτ

(WHOh
(R)
τ,Tτ

+ bO)
)
, (12)

where h(R)
τ,Tτ

is the hidden activation vector given by the LSTM layer of role R, and δR,Rτ
is Kro-

necker’s delta, i.e. if Rτ the role of the τ -th utterance equals role R, it takes 1, otherwise takes
0. Furthermore, at the beginning of each utterance, the hidden and cell activation vectors of the
role-dependent layer are given as

h
(Rτ )
τ,0 = h

(Rτ−1)
τ−1,Tτ−1

(13)

c
(Rτ )
τ,0 = c

(Rτ−1)
τ−1,Tτ−1

. (14)
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Figure 5: Propagation through time in context-sensitive role-dependent SLU. The blue boxes corre-
spond to client utterance states and the red boxes correspond to agent utterance states.

Table 1: An Example of Hotel Reservation Dialog
Speaker Utterance Concept tags
Agent hello , greeting
Agent new york city hotel , introduce-self
Agent may i help you ? offer+help
Cleint i would like to make a reservation for a room . request-action+reservation+hotel
Agent very good . acknowledge
Agent may i have the spelling of your name , please ? request-information+name
Client it is m i k e , s m i t h . give-information+name
Agent uh when would you like to stay ? request-information+temporal
Client from august tenth to august sixteenth , seven days . give-information+temporal
Agent i see , acknowledge
Agent you would be arriving on the tenth ? is that right ? verify-give-information+temporal
Client that is right . affirm
Agent great . acknowledge
Agent and , what sort of room would you like ? request-information+room
Client well , it is just for myself , give-information+party
Client so a single room would be good . give-information+room
Agent okay . acknowledge
Agent a single , verify-give-information+room
Agent starting on the tenth and verify-give-information+temporal
Agent you would be checking out on the sixteenth ? is that right ? verify-give-information+temporal
Client yes , affirm
Client and i like the second or third floor , if possible . give-information+room
Agent i see . acknowledge

Figure 5 shows the temporal process of the role-dependent SLU. For each utterance in a given role,
only the LSTM layer for that role is active, and the hidden activation and the cell memory are
propagated over dialog turns. In the figure, the blue boxes correspond to client utterance states and
the red boxes correspond to agent utterance states. With this architecture, the both layers can be
trained considering a long context of each dialog, and the model can predict role-dependent concept
labels more accurately.

Table 2: Label Accuracies
Dialog Act (DA) Dialog Act + Slot type (DA+ST)

Dev. set Test set Dev. set Test set
Logistic Regression 69.8 70.8 61.4 61.6
Logistic Regression w/ word2vec 71.1 72.4 62.1 62.3
Utterance-based LSTM 73.3 69.8 59.5 56.2
Context-Sensitive LSTM 81.3 78.8 64.7 64.5
+Role dependent layers 84.6 84.0 69.4 70.3
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4 Experiments

4.1 Dialog Data

We trained models using a human-to-human dialog data annotated with concept tags representing
client and agent intentions for hotel reservation. Table 1 shows samples of the utterances and tags
used for the task. In the experiments, Japanese utterances were used. 131 dialogs were split into
97 dialogs (5213 utterances) for training, 17 dialogs (1006 utterances) for development sets and 17
dialogs (1134 utterances)for test sets. The vocabulary size of the training data is 1550. The concept
tags are based on Interchange Format (IF) which is an Interlingual for speech translation systems.
The original tags indicates a combination of dialog acts, slot types and slot values. To model dialog
discourses, two different layers of tags are used. One is a combination of dialog acts and slot types
such as ”request-information+room”. the total number of the tags is 419 consisting of 186 client
and 233 agent tags. The other one is dialog acts layer only such as ”request-information” in which
consists of 65 tags including 29 client and 36 agent tags.

4.2 Classifiers

To evaluate efficiency of our proposed method, we compared label accuracies using Logistic Regres-
sion (LR) and LSTMs, including the context sensitive LSTMs with and without the role dependent
LSTM layer. In the baseline LR system, each sentence is represented as a bag-of-Words feature
vector. We tested the performance of word2vec features [13] by concatenating the bag-of-words and
word embedding features [8]. The 200-dimensional word2vec features were used for the ”dialog
act” (DA) LR system and 500-dimensional word2vec features were used for the ”dialog acts and
slot type” (DA+ST) LR system, where the dimensions were selected using the dev. set. We used
a 1.8G Japanese web text corpus to train word2vec in unsupervised fashion. The context sensitive
LSTMs and speaker role based LSTM layers were trained on the platform of Chainer [14].

4.3 Evaluation Results

The experimental results are shown in Table 2. By using the word2vec features, the performance
was slightly improved from the baseline system by 1.3% (dev.) and 1.6% (test) for DA and 0.7 %
(dev. and test) for DA+ST. The performance further improves to 10.2%(dev.) and 6.4%(test) for
DA and 2.6%(dev.) and 1.2%(test) for DA+ST by the context sensitive LSTMs. This result con-
firms the importance of modeling dialog context in SLU. In addition, the speaker role based LSTM
layers significantly improve the performance from the context sensitive LSTMs only to 3.3%(dev.)
and 5.2%(test) for DA and 4.7%(dev.) and 5.8%(test) for DA+ST. These results indicate that roll-
dependent LSTM layers which characterize expressions of utterances varied among each role con-
tribute to intention classifier.

5 Conclusion

We proposed an efficient context sensitive SLU approache using role-based LSTM layers. In order
to capture long-term characteristics over an entire dialog, we implemented LSTMs representing
intention using consequent word sequences of each concept tag. We evaluated the performance of
importing contextual information of an entire dialog for SLU and the effectiveness of the speaker
role based LSTM layers. The context sensitive LSTMs with roll-dependent layers out-performs
utterance-based approaches and improves the SLU baseline by 11.6% and 8.0% (absolute) for the
layer of DA and DA+ST, respectively. In this study, LSTMs are trained from the features of word
sequences only to predict the concept tags. Future works will test LSTMs trained using the feature
of the concept tags explicitly to improve label accuracies.
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