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Abstract 7 

In this paper we describe Maxwell, our text-based multi-party 8 
conversational agent that delivers contextual knowledge derived from a 9 
corpus of 20 million news articles. We specifically focus on the context-10 
monitoring component. Maxwell constantly tracks and models shift in 11 
conversational context by identifying topic breakpoints in conversational 12 
chains. Using a NARX recurrent network with reduced dimensionality 13 
CBOW word embedding features to model context shifts, we demonstrate 14 
an AUC of 0.701 in a sentence-based news domain topic shift task, which 15 
we consider encouraging initial results. We provide a brief description of 16 
Maxwell’s architecture and approach and describe how we apply our 17 
context-awareness strategy in Maxwell. 18 

1 Introduction 19 

Task-oriented conversational agents typically combine dialog management functionality [3] 20 
with language understanding (or parsing), and possibly an ASR front-end and a natural 21 
language generation component. In these systems, there is typically a well-defined goal (or 22 
set of goals) and the agent’s mission is to broker interactions with the end goal of furthering 23 
progress in terms of task achievement (e.g., [4]). While traditional assumptions are that there 24 
is an exclusive one-on-one interaction between the user and the agent, some work has been 25 
done around groups of users and thus multiparty engagements [16]. 26 

In this work we focus on Maxwell, which is our text-based conversational chat-bot for slack1 27 
whose goal, rather achieving a particular transactional task, is to provide relevant 28 
information contained in a very large set of newspaper articles (the knowledge base) at the 29 
relevant moment during multi-human natural chat conversations. Therefore, instead of 30 
operating in the traditional direct versus mixed initiative modalities, Maxwell works in 31 
background mode, passively listening to the conversation most of the time and only 32 
intervening (or barging-in) at moments when pieces of information (i.e., facts, articles) that 33 
are relevant to the conversation at some point exist in the knowledge base delivering these. 34 
In this paper we focus on Maxwell ability to track contexts (i.e., topics, entities, themes, and 35 
facts), which is used to detect topic breakpoints that trigger backend queries.  36 

We specifically explain our approach that is based on Recurrent Neural Networks (RNN), 37 
specifically using a NARX network  (Non-linear autoregressive with exogenous inputs) with 38 
CBOW word embeddings. In the next section we describe Maxwell’s architecture and 39 
components, followed by our approach to context tracking and our experimental setup and 40 
results, finalizing with conclusions and thoughts regarding future work. 41 

 42 
 43 
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2 Maxwell:  a  Knowledge-Oriented Conversational  Agent 44 

Maxwell is a text oriented bot with a conversational front end providing access to a large 45 
knowledge graph constructed around a very large set of news articles. The goal of Maxwell 46 
is to provide information during the course of human-to-human interactions  (as opposed to 47 
carrying out transactional tasks). Maxwell is architected in 3 layers: the data-processing 48 
layer (Maxwell Pipeline), the Real-time summarization engine (accessible to applications 49 
through an API), and  a suite of applications that access the summarization engine through 50 
the API. The particular end-user application we describe here is the conversational front end 51 
built as a slackbot. Figure 1 shows the architectural diagram of the 3 layers of Maxwell.  52 

For the conversational bot, during the course of a conversation, once a topic and an entity 53 
are established, a query is released to the summarization engine API.  The summarization 54 
engine narrows down on the shard most relevant to the query’s entity and proceeds to 55 
analyze the shard using the query’s context, returning a scored graph structure that the 56 
slackbot further evaluates, process and renders in brief textual form, it deems it adequate. 57 
Sharding is necessary because it is impractical to attempt to load the whole corpus into 58 
memory. We describe in more detail each of these modules.  59 
 60 
2 . 1  M a x w e l l  L a r g e  S c a l e  D a t a - I n g e s t i o n  P i p e l i n e  61 
Maxwell’s backend is responsible for processing the news articles corpus; it runs in batch 62 
off line fashion. It is implemented in a parallelized way, specifically in Hadoop Map Reduce 63 
in Amazon elastic cloud and is thus capable of scale to handle an arbitrarily large corpus of 64 
news articles. Currently we have over 20 million English pieces (including articles, 65 
newswires, press releases, etc.) comprising clearly over 1 billion words; these articles were 66 
published through 6 months (contained in our Factiva database).  Maxwell’s pipeline ingests, 67 
annotates, summarizes, collates and indexes content.  The result is a very large graph (the 68 
Maxwell Domain Graph), which is sharded by entities (people and companies, currently). 69 
Each article is consumed in parallel by the map tasks and XML-processed, parsed, and keyed 70 
by entity; in the reduce step each set of records is collated and further organized into shards. 71 
For the 6-month Factiva dataset we created a final custom on-disk tree-hierarchical structure 72 
in which nodes in the tree contain entity specific graphs while the tree itself is a trie based 73 
on entity-ID hashes. During query time, given a particular entity, it is very efficient to load 74 
into memory the corresponding entity-specific shard containing the pertaining structure and 75 
proceed with the summarization analysis.  76 
 77 
2 . 2  M a x w e l l  D y n a m i c  S u m m a r i z a t i o n  E n g i n e  78 

The real time dynamic summarization engine receives the queries coming from the user-79 
facing applications (through a set of RESTful API endpoints [2]) and based on the central 80 
entity in the query loads the relevant Maxwell Domain Graph shard and  analyzes/produces a 81 
summarization object. A summarization object is a scored graph in which the nodes are 82 
articles, and edges are relations. There are 3 types of summaries or graphs that can be 83 
produced (depending on the endpoint accessed): linear (time oriented), graph (topic oriented) 84 
and tree (which is a minimum spanning tree of the topics). In each of the cases the nodes 85 
contain a score that reflects the relevance of the article (node) to the query.  In the case of 86 
the graph and the tree structures, the edges represent document similarities above a certain 87 
threshold from the point of view of the context provided in the query (more below).  88 

These 3 types of structures provide the user-facing application the ability to decide which 89 
structure to traverse, and how to do so, in order to find interconnections and prioritizations 90 
in the rendering of the final output. Depending on the application, a particular structure 91 
might be more advantageous (i.e., time-oriented traversals are best using the linear 92 
representation, the graph is best to identify communities of topics, while the tree (which is a 93 
minimum spanning tree) allows efficient distant node traversals). Each of these 3 types of 94 
graph analysis provides the ability to render a particular type of summary to the end user app 95 
(more below). 96 

 To score similarity between the context of a query and a particular node, the DSE maps 97 
queries and summaries to CBOW vectors [6, 7, 8]. For scoring it uses a POS-filtered CBOW 98 



vectors and calculates similarity score between pre-computed CBOW sets generated from 99 
the article and the CBOW vector of the query   100 

 101 
Figure 1. Schematic Diagram of Maxwell’s Architecture 102 

 103 
2 . 3  M a x w e l l  C o n v e r s a t i o n a l  F r o n t - E n d  104 

In the Maxwell architecture, the results delivered at the Summarization API endpoint by the 105 
DSE allow for the end-user interface (or front end) to be implemented in a variety of ways 106 
(visual interface, conversational, hybrid etc.). In this particular work we describe the 107 
conversational agent implementation. The conversational agent has a typical ([3]) 108 
architecture consisting of a Dialog manager (FSM), and a Language processing component, 109 
(which consists in turn of a Parsing, Entity extractor, POS-parsing and intention extraction), 110 
a backend-access point (the Maxwell DSE API) and a summary scoring and rendering 111 
component. It is purely text/visual based (not speech based). 112 

 In terms of Dialog Management, our conversational agent operates in one of 4 possible 113 
interaction modalities: (1) direct mode, i.e., being active mode in single-user conversations, 114 
(2) asleep mode, i.e., passive mode in single-user conversations, (3) question-answering, 115 
active mode in single-user 1 conversations in which each turn is assumed to be a self-116 
contained question, and (4) background mode, i.e., multiparty passive conversations.  117 

In our work we primarily focus on developing the multiparty passive dialog modality (the 118 
background mode), which requires Maxwell to be able to constantly listen a multi-party 119 
human conversation where topics and context are constantly changing, and barge-in and 120 
deliver a succinct point of view (or piece of information) when it’s relevant. To support all 4 121 
conversational modes, Maxwell needs to have combinations of dual context-awareness: short 122 
term (within-turn) for QA, directed and asleep modes and long-term (multi-turn) context-123 
awareness for background mode. The background modality requires us to model context, 124 
implement a mechanism to calculate when to barge in, and to implement a result/summary-125 
rendering component.  In the rest of this paper, we focus on the long-term context-tracking 126 
feature of Maxwell and the approaches we are investigating. 127 

 128 
3 Modeling Long-Term Context  129 

In order to model long-term context, Maxwell addresses the problem as 2 sub-problems: (1) 130 
monitoring and identification of the topic and context breakpoints or significant shifts, (2) 131 
representation of the conversation segments as sets of keywords/key-phrases. We describe 132 
our approach to the first sub-problem: the identification of interaction breakpoints using a 133 
NARX network [13]. 134 
Let us assume that the set T represents a sequence of conversation turns ordered in 135 
chronological order T=[t1, t2, … tN] (these can be sentences or turns in a conversation). For 136 
each turn ti we can generate the skipgram CBOW vector vi representation (skip-gram with 137 
negative-sampling (SGNS), a word embedding method introduced by Mikolov et al. [6,7,8] 138 



Using Google’s word2vec in Gensim, specifically the GoogleNews-vectors-negative300 139 
model, the dimensionality of the embedding vectors is 300.  Based on V=[v1, v2, … vN] we 140 
can generate W=[w1, w2, w3,…] where each vector wi is a 600 dimensional vector consisting 141 
of vi and a concatenation of a vector di of time difference deltas where di,j=(vi,j-vi-1,j)^2.  In 142 
general, if the dimension of the CBOW model is d, the dimensionality of each vector in W is 143 
2d. 144 

Next we use the time series W and a vector of responses Y of length N (where every yi is 0, 145 
except where there is a change in context, in which case  yi=1) to train a supervised classifier 146 
to recognize Y. If every vector wi was an independent vector this would be a simple 147 
classification problem but as W represents a time series, we decided to apply a recurrent 148 
neural network to learn to identify shifts or changes in W.  Specifically we trained a NARX 149 
network with 2d input nodes (where inputs are vectors wi), d hidden nodes, 1 output node 150 
and output order = 2. This network takes multiple copies of the input (and possibly of 151 
intermediate layers). In our case it takes a copy of the vector w_(i-1) as input.  The 152 
expectation is that the recurrent nature of the network will enable it to learn to identify 153 
changes, shifts and differences in the incoming multi-dimensional signal. NARX approaches 154 
have been applied in time series prediction (e.g., [13]), in this case our task is breakpoint 155 
identification. We use PyNeurGen2. 156 
In order to speed up the training process as well as to build more concise and parsimonious 157 
models, we implemented a simple dimensionality reduction process  in which we select a 158 
random a subset of dimensions  from the d original dimensions.  Our original dimension 159 
d=300 and our target dimension d2=24.  While there is a degradation in classification 160 
performance, as expected, this degradation is not too large to make this approach unusable, 161 
while increasing the speed of training. 162 

 163 
4 Evaluation 164 

In order to train and evaluate our context-tracking algorithm, we built a corpus consisting of 165 
the concatenation of the paragraphs contained in 2000 randomly selected news articles 166 
published in the first 6 months of 2015 in Factiva. From this article concatenation, we 167 
created a list containing one entry per each of the paragraphs of text in the articles.  Each 168 
entry in this list corresponds to a paragraph in the article; the list is ordered and article 169 
boundaries are preserved. The task is to model the flow of textual language and identify the 170 
points in which the article boundaries are by detecting changes in topic/context. The total 171 
number of paragraphs in this corpus is 36,400. The average number of paragraphs per article 172 
is about 18. There total number of word tokens in the corpus is 1 million, and the average 173 
number of word tokens per paragraph is 27.5 with most paragraphs containing a couple of 174 
sentences per paragraph.  175 

Thus, the list of paragraphs that conforms our corpus consists of 36,400 sample points. 176 
There are 2000 breakpoints contained in the 36,400 samples. Because this list is meant to 177 
represent a time series, we preserved the paragraph order of the list both in the training and 178 
eval phases of the task.  179 

 We split this list into two sublists of 60% and 40% length for training and eval purposes 180 
respectively. Therefore, there are about 1,200 topic breakpoints in the training set and 800 in 181 
the eval set. The task is then to process the eval time series and to produce a list of values (0 182 
if we think there is no change in context and 1 if we thin there is); the input is consumed one 183 
turn at a time. Turns consist of 28 words on average per turn. On average, every 18 turns or 184 
so, a context shift occurs.  185 

Using the training part of this corpus and preserving the order of the paragraph features in 186 
the set, we trained a NARX network using different values of target dimensions d2. Testing 187 
on the eval portion of the corpus we obtained the results shown in figure 2 below. In the left 188 
panel we show the ROC plot for the classifier trained on 24 dimensions. The area under the 189 
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curve for this dimensionality is 0.701.  In the right panel we show the Cumulative Gains 190 
Chart at a each of the 10 decile points. The vertical axis shows the percentage of positive 191 
responses. Each curve represents true positive response as a function of percentile at a 192 
specific dimension. The 3 curves reflect 8, 12 and 24 dimensions respectively from top to 193 
bottom. As we can see, higher dimensions increase performance. We observed that higher 194 
dimensionality also significantly increase computational complexity. 195 

From these experiments we conclude the feasibility of the proposed approach. We 196 
demonstrated that using NARX networks and treating the incremental flow of text as time 197 
series in which chunks of 2 sentences are processed and analyzed for change in topic or 198 
context is a usable approach.  199 

 200 
Figure 2. Time series context switch detection results: (a) ROC and (b) cummulative gains 201 

charts 202 

 203 
5 Related and Relevant Work 204 

From the point of view of summary generation, Rush et al [12] describe a method to 205 
generate summary content from observed article content. Their approach is based on a neural 206 
attention model, which can be customized using several encoder strategies. Their approach 207 
focuses on learning to produce headlines as a way to summarize content. We believe that 208 
this technique could be incorporated to Maxwell’s output natural language generation 209 
component. Silber [14] and Yeh [17] each propose strategies to solve the same problem. 210 
Their techniques are based on less computationally demanding approaches, and could still be 211 
of use for our summarization.. 212 

 213 
6 Conclusions and Direct ions for Future Work 214 

We have described in this paper a conversational agent capable of providing information 215 
relevant in a conversation based on a very large article base. We think that Maxwell can be 216 
improved across practically every constituent component: we believe we could explore new 217 
and improved dialog management strategies, different content summarization strategies, and 218 
leverage advances in question answering (e.g., [1, 5, 9, 15]) as well as knowledge base 219 
representation approaches [10, 11].  220 

In addition to describing Maxwell’s architecture, in this paper we have focused on the 221 
context-tracking algorithm we developed. We have obtained initial promising results based 222 
on a recursive neural network approach where the embedding vector is used as a time-223 
varying signal. We have observed that our algorithm is robust when the text to be analyzed 224 
is similar to news article language. One possible direction for future work is to make our 225 
context-tracking algorithm more robust to human-to-human casual interactions and 226 
conversational language. 227 
  228 



R e f e r e n c e s  229 
[1] Antoine Bordes, Nicolas Usunier, Sumit Chopra, Jason Weston. Large-scale Simple Question 230 
Answering with Memory Networks. arXiv Pre-Print, 2015 231 
[2] Huerta, J. and Childs, C. “Accelerating News Integration in Automatic Knowledge Extraction 232 
Ecosystems: an API-first Outlook API’s”   arXiv:1509.02783 233 
[3] Huerta Pieraccini, “Where do we go from here? Research and Commercial Spoken Dialog 234 
Systems”, 6th SIGdial Workshop on Discourse and Dialogue 2005 235 
[4] Mesnil et al., Using Recurrent Neural Networks for Slot Filling in Spoken Language 236 
Understanding. 2013  237 
[5] Karl Moritz Hermann et. al. Teaching Machines to Read and Comprehend. arXiv Pre-Print, 2015. 238 
 [6] T. Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word 239 
Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013. 240 
[7] Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations 241 
of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013. 242 
[8] Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic Regularities in Continuous Space Word 243 
Representations. In Proceedings of NAACL HLT, 2013. 244 
 [9] Ndapandula Nakashole, Micro Reading with Priors: Towards Second Generation Machine 245 
Readers, ABC2014 246 
[10] Arvind Neelakantan, Benjamin Roth and Andrew Mccallum.  Knowledge Base Completion using 247 
Compositional Vector Space Models  AKBC 2014 248 
 [11] Jay Pujara and Lise Getoor.  Building Dynamic Knowledge Graphs  AKBC 2014 249 
 [12] Rush et al, A Neural Attention Model for Abstractive Sentence Summarization, 250 
arXiv:1509.00685  251 
[13] Sámek, David, and David Manas. "Artificial neural networks in artificial time series prediction 252 
benchmark." International Journal of Mathematical Models and Methods in Applied Sciences 5.6 253 
(2011). 254 
 [14] Silber, H. Gregory, and Kathleen F. McCoy. "Efficient text summarization using lexical chains." 255 
Proceedings of the 5th international conference on Intelligent user interfaces. ACM, 2000. 256 
[15] Tomasz Tylenda, Sarath Kumar Kondreddi and Gerhard Weikum.  Spotting Knowledge Base 257 
Facts in Web Texts AKBC 2014  258 
[16]  David Traum and Stacy Marsella and Jonathan Gratch and Jina Lee and Arno Hartholt, “multi-259 
issue, multi-strategy negotiation for multi-modal virtual agents”  in Proc. of IVA, 2008 260 
 [17] Yeh, Jen-Yuan, et al. "Text summarization using a trainable summarizer and latent semantic 261 
analysis." Information processing & management 41.1 (2005). 262 
 263 


