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Montréal, Canada
junyoung.chung@umontreal.ca

Jacob Devlin Hany Hassan Awadalla
Microsoft Research

Redmond, USA
{jdevlin, hanyh}@microsoft.com

Abstract

In this paper, we explore different neural network architectures that can predict if a
speaker of a given utterance is asking a question or making a statement. We com-
pare the outcomes of regularization methods that are popularly used to train deep
neural networks and study how different context functions can affect the classifica-
tion performance. We also compare the efficacy of gated activation functions that
are favorably used in recurrent neural networks and study how to combine multi-
modal inputs. We evaluate our models on two multimodal datasets: MSR-Skype
and CALLHOME.

1 Introduction

Spoken language understanding is a long-term goal of machine learning and potentially has a huge
impact in practical applications. However, the difficulty of processing speech signals itself is a bot-
tleneck, for instance, the core part of speech translation has to be processed in the text domain. In
other words, a failure of capturing the key features in the speech signals can lead the next applica-
tions into unexpected results.

Identifying whether a given utterance is a question or not can be one of the key features in ap-
plications such as speech translation. Unfortunately, a speech recognition system is likely to fail
achieving two goals at a same time: (1) extract text sequences from the input utterances, (2) detect
questions. We can think of a question detection system that works independently and unburdens the
load of the speech recognition system [15, 10, 4, 14, 3]. Later, an annotation of being a question
can form a set with the output of the speech recognition system and handed over to the machine
translation system.

Previous studies have focused on using hand-designed features and classifiers such as support vector
machines (SVMs) [10, 14] or tree-based classifiers [15, 4, 3]. The classifiers used in these systems
are shallow and simple, but there are considerable efforts on designing features based on domain
knowledge. However, there is no guarantee that these hand-designed features are optimal to solve
the problem.

In this study, we will let the model to learn the features from the training examples and the objective
function. We propose a recurrent neural network (RNN) based system with various model archi-
tectures that can detect questions using multimodal inputs. Our question detection system runs as
fast as other real-time systems at the test time, receives multimodal inputs and returns a scalar score
value ŷ ∈ [0, 1]. We evaluate our models on two multimodal datasets, which consist with pairs of
text transcripts and audio signals. Our experiments reveal what types of context functions, regu-
larization methods, state transition functions of RNNs and data domains are helpful in RNN-based
question detection systems.

∗Work done while the author was at Microsoft.
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Table 1: Types of questions
Examples

Yes-No Did you attend the meeting?
wh-words Where have you been?

Declarative You are at the meeting?

2 Background

2.1 Types of Questions

Questions can have different canonical forms, and they are usually not standardized. However, we
can divide the questions into three groups based upon some criteria. Table 1 shows an example from
each group. We note that declarative questions are rather unclear to differentiate from non-question
statements by looking into their canonical forms because they usually do not contain any wh-words.
However, audio signals might contain the features that can be useful when making predictions on
this kind of examples, where a question usually contains a rising pitch at the end of the utterance.

2.2 Neural Networks

An RNN can process a sequence x = (x1,x2, . . . ,xT ) by recursively applying a transition function
g to each symbol:

st = g(xt, st−1), (1)

where g is usually a deterministic non-linear transition function. g gains extra strength to capture
long-term memories when implemented with gated activation functions [6] such as long short-term
memory [LSTM, 7] or gated recurrent unit [GRU, 5]. We can add more hidden layers in advance or
subsequent to the RNN to increase the capacity of the model such that:

zt = h(g(f(xt), st−1)), (2)

where, a sequence z = (z1, z2, . . . , zT ) is the transformed feature representation of the input se-
quence x, and f and h are additional hidden layers. Instead of using the whole z, we can apply a
context function c to reduce the dimensionality and take only the abstract information out of z. The
context function c can be either defined as introduced in [5]:

c1(z) = zT , (3)

or as introduced in [1]:

c2(z) =
T∑

t=1

αtst, (4)

where αt is the weight of each annotation ht. c(z) can be used as the learned features for the logistic
regression classifier:

ŷ = σ(c(z)), (5)

where σ is a notation of a sigmoid function.

In this study, we implement f and hwith deep neural networks (DNNs) using fully-connected layers
and rectified linear units [11] as non-linearity, g with a recurrent layer using either GRU or LSTM
as the state transition function, and the context function c with either Eq. (3) or Eq. (4).

3 Proposed Models

We take a neural network based approach where we can stack multiple feedforward and recur-
rent layers to learn hierarchical features from the training examples and the objective function via
stochastic gradient descent.
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We consider two types of inputs, which are text transcripts and audio signals of utterances. De-
pending on what types of inputs are used, we can divide the models into three groups: (1) receive
only text inputs, (2) receive only audio inputs and (3) receive both inputs. When a model receives
both inputs as (3), we can think of a simple but naive way of combining two different features as
shown as ‘Combinational’ in Fig. 1. For a model in each group, it can choose the context function
to become as either Eq. (3) or Eq. (4), so the number of combinations becomes six. However, there
is another model, receives both inputs, uses Eq. (4) as the context function, but uses a different way
of combining two features that is depicted as ‘Conditional’ in Fig. 1.

Figure 1: Graphical illustration of each group, note that the context function c can be implemented
as either Eq. (3) or Eq. (4). x of ‘Single’ model can be either a text input or an audio input. ‘Com-
binational’ and ‘Conditional’ models take both inputs, where the subscript T stands for text source
and A stands for audio source. The topmost blocks with σ indicate the logistic regression classi-
fiers. Each layer has 200 hidden units. The training objective is to minimize the average negative
log-likelihood of the training examples. We implement the RNN with its bidirectional variant [12].

For each model in each group, we train it with three different ways: (1) without any regularization
methods, (2) use dropout [13] and (3) use batch normalization (BN) [8] (note that we are not the first
to apply batch normalization to a neural network architecture that contains an RNN [9]). However,
there is another diversity, the state transition function of the RNN hidden state, which can be imple-
mented either as a GRU or an LSTM. Therefore, for each model, there are six different candidates to
compare with. Recall that we have seven different models, each model has six different variations,
there is a total of 42 candidates to be tested on two datasets that are MSR-Skype and CALLHOME.

4 Experiment Settings

4.1 Datasets

MSR-Skype MSR-Skype dataset contains 18, 006 examples given as text-audio pairs, and the
proportion of positive and negative examples are well-balanced. Each example is an utterance,
which is segmented manually. We only use examples that contain 3 to 25 words to train the models.
We use 80% of the examples as a training set and reserve 20% of the examples to validate and
evaluate the models.
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Table 2: Test F1 score of the models trained on MSR-Skype. First two columns use neither dropout
(shortened as D) nor BN.

GRU LSTM GRU, D LSTM, D GRU, BN LSTM, BN
text, c1 88.8 88.6 89.1 89.1 90.6 90.2
text, c2 89.5 88.9 88.9 88.7 90.8 90.5

audio, c1 77.3 73.7 79.2 77.0 75.3 71.2
audio, c2 77.2 77.6 80.7 81.2 76.5 76.8

combination, c1 89.2 88.9 89.1 88.8 90.5 90.3
combination, c2 89.7 88.9 89.2 89.0 90.9 91.0

condition, c2 90.0 89.8 90.0 90.1 90.7 90.1

CALLHOME We use a subset of the original CALLHOME, where the text transcripts are created
by human annotators. There are 2, 528 examples given as text-audio pairs. Utterances are segmented
manually, and the train/validation/test splits are divided as same as the MSR-Skype dataset.

Preprocessing For the text data, we remove punctuations, commas, question marks, exclamation
marks to prevent the model from making decisions based on these special tokens. We do not consider
pretraining word representation vectors with external datasets, however, they are learned jointly with
the objective function during the training procedure. Therefore, h1 in ‘Single’ (only when x is text
data) and h1

T in ‘Combinational’ and ‘Conditional’ become continuous vector representations of the
words (in this case, we do not apply non-linearity). We built the dictionary from MSR-Skype and
CALLHOME, which contains 13,911 vocabularies.

We extract MFCC from the raw audio signals with 40ms frame duration, and 15ms overlap. The
lengths of the audio sequences (after extracting MFCC) could be significantly longer than the text
sequences, therefore, in order to reduce the number of timesteps, we concatenate four frames into
one chunk and treat it as a single frame.

4.2 Results

Table 2 shows the results of the models trained on MSR-Skype dataset. We can observe a few
tendencies in the obtained results depending on what kind of variations are applied to the models (c1
or c2, GRU or LSTM, dropout or batch normalization and types of inputs).

In general, using both input sources are helpful, but the advantage is not that impressive when batch
normalization is used for training. The lengths of the audio sequences are usually longer than the
text sequences, and attention mechanism (c2) [1] is known to be a nice solution to deal with long
sequences. Therefore, when the model can only take audio inputs, c2 is a better option than c1.

Dropout will help in most cases, however, when using both input sources, the performance does not
improve that much. In fact, the performance gets worse than the models, which do not use dropout.
We assume that the optimization problem becomes difficult with dropout when the models receive
both input sources, hence, in this case we need more care in using dropout. Batch normalization im-
proves the performance with a huge gap for the models that receive text source as inputs. However,
batch normalization does not help the models that can only receive audio inputs. The best perfor-
mance is achieved by a model that receives both input sources (combinational), uses c2 as context
function, uses batch normalization for training and uses LSTM as the state transition function of the
RNN.

Table 3 shows the result of each model trained on CALLHOME. We can observe that c2 helps the
models that only take audio inputs, and batch normalization improves the performance of the models
that includes text source as their inputs. The best performance is achieved by a model that takes both
input sources (combinational), uses c1 as context function, uses batch normalization for training and
uses GRU as the state transition function of the RNN.

In Table 4, we test our models on sequences with different lengths. We use the same models that
were trained on MSR-Skype, without any regularization methods. The sequences are divided into
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Table 3: Test F1 score of the models trained on CALLHOME. First two columns use neither dropout
(shortened as D) nor BN.

GRU LSTM GRU, D LSTM, D GRU, BN LSTM, BN
text, c1 81.3 81.1 81.4 80.6 82.9 82.7
text, c2 81.0 80.7 81.2 81.5 83.5 83.0

audio, c1 70.9 70.0 72.2 72.4 67.0 66.3
audio, c2 70.8 71.8 72.5 73.4 69.2 67.8

combination, c1 83.1 82.7 82.6 82.8 84.6 84.0
combination, c2 83.0 82.5 82.7 82.4 84.1 83.6

condition, c2 83.8 83.9 83.9 83.9 82.4 83.7

Table 4: Test F1 score of the models trained on MSR-Skype and tested on variable-length sequences.

text, c2 audio, c2 combination, c2 condition, c2
Short Sequences 77.6 64.6 78.3 79.3

Intermediate Sequences 90.1 82.3 90.5 91.2
Long Sequences 80.3 69.4 82.8 84.0

three groups depending on the number of words contained in each sequence. Short sequences have
less than 5 words, long sequences have more than 20 words, and intermediate sequences contain 5 to
20 words. We observe that the models achieve the best performance on intermediate sequences, and
the models tend to do better jobs on short and long sequences when the inputs contain text source.
The performance degradations on short or long sequences compared to intermediate sequences are
smaller when we use both input sources (see ‘combination’ and ‘condition’, especially models lose
less performance against long sequences).

Table 5 shows some test examples that neither contain wh-words nor have canonical form of ques-
tions, which we have already introduced as declarative questions in Sec. 2.1. In this kind of ques-
tions, there are usually rising pitches at the end of the audio signals. For the models, which receive
the audio source as inputs, can benefit from having audio information as shown in Table 5 (see ‘au-
dio’, ‘combination’ and ‘condition’). For the models, which receive only text source as inputs, do
not have relevant information to guess whether the given utterances are questions or not.

The predicted scores from the models using both inputs are sometimes less than the scores from the
model using only audio inputs. We assume that these models have to make compromise between
the text features and audio features when these two these two are in conflict. However, given the
training objective, it is difficult to expect that the models will completely ignore one of the features,
instead, the models will tend to learn more smooth decision boundaries.

5 Conclusion

We explore various types of RNN-based architectures for detecting questions in English utterances.
We discover some features that can help the models to achieve better scores in the question detection
task. Different types of inputs can complement each other, and the models can benefit from using
both text and audio sources as inputs. Attention mechanism (c2) helps the models that receive
long audio sequences as inputs. Regularization methods can help the models to generalize better,
however, when the models receive multimodal inputs, we need to be more careful on using these
regularization methods.
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Table 5: Examples of predicted scores on declarative questions.
Test Examples text, c2 audio, c2 combination, c2 condition, c2

any other questions? 0.44 0.98 0.72 0.84
and your cats? 0.63 0.93 0.97 0.72
oh, the bird? 0.42 0.83 0.77 0.72
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