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Abstract

Spoken language interfaces are being incorporated into various devices such as
smart-phones and TVs. However, dialog systems will fail to respond correctly
when users request functionality not supported by currently installed apps. We
propose a feature-enriched matrix factorization (MF) approach to model open do-
main intents that allow a system to dynamically add app-relevant domains accord-
ing to users’ requests. We use MF to jointly model published app descriptions
and users’ spoken requests; this generates latent feature vectors for utterances and
user intents without need for prior annotation. The matrix can further incorporate
user behavioral patterns found in their activity logs to learn user-specific intent
prediction models. We show that the MF models enriched with multimodality
significantly improve the intent prediction, achieving 34% and 55% of mean av-
erage precision (MAP) for unsupervised single-turn requests and for supervised
multi-turn interactions on ASR transcripts respectively.

1 Introduction

Spoken dialogue systems (SDS) are appearing on smart-phones and allow users to launch appli-
cations (apps) via spontaneous speech. Typically, an SDS requires predefined domain knowledge
to understand corresponding functions, where the key component of an SDS is a spoken language
understanding (SLU) model that maps utterances into actions; for example, after listening to “drive
me to cmu”, the system may predict that the user requires navigation and automatically launches the
corresponding app “MAPS” to provide better interactions. Such apps support a single-turn request
task.

To design the SLU module of an SDS, most previous studies relied on predefined ontology to train
the decoder [1, 2, 3, 4]. However, these predefined ontologies may bias the subsequent user data
collection process, and incur the cost of manually labeling utterances and updating the ontology.
This problem recently leads to the development of unsupervised SLU techniques [5, 6, 7, 8, 9].
Chen et al. proposed a frame-semantics based framework for automatically inducing semantic slots
given raw speech audio [7]. A knowledge graph resource was used to train models for intent de-
tection in SLU, and results obtained from an unsupervised training process aligned well with the
performance of traditional supervised learning [5]. Search engine logs and entity types from the
knowledge graph were utilized to infer semantics and help improve the slot-filling performance in
a movie domain [10, 11]. Such knowledge can be applied to domain expansion and supports open
domain requests in SDSs [12, 13]. However, these approaches generally do not explicitly learn the
latent factor representations that models the inference of hidden semantics. Considering that a user
utterance “i would like to contact alex” includes explicit semantic information about “contact” in
its surface patterns, it also includes hidden semantic information such as “message” and “email”,
since the user likely intends to launch apps like MESSENGER (message) or OUTLOOK (email) even
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though they are not directly observed in the surface patterns. To provide better interactions with
users, modeling the hidden intent helps predict the users’ desired apps. Traditional SLU models use
discriminative classifiers to predict whether the predefined slots occur in the utterances or not and
ignore hidden semantic information.

In addition to the difficulty caused by language ambiguity, behavioral patterns also influence the
user intents. Typical intelligent assistants (IAs) treat each task (e.g. restaurant search, messaging,
etc) independent of each other, where only users’ current utterances are considered to decide the
desired apps for SLU [13]. Some IAs model user intents by using the contextual utterances, but they
do not take into account the behavioral patterns of individual users [14]. This work improves the
intent prediction based on our observation that the intended apps usually depend on 1) individual
preference (some people prefer MESSAGE to EMAIL) and 2) behavioral patterns at the app level
(MESSAGE is more likely to follow CAMERA, and EMAIL is more likely to follow EXCEL). We
refer to it as multi-turn interaction task.

To improve understanding, some studies utilized the non-verbal contexts like eye gaze and head
nod as cues to resolve the referring expression ambiguity and to improve driving performance re-
spectively [15, 16]. Considering that human users often interact with their phones to carry out
complicated tasks that span multiple domains and apps, user behavioral patterns as additional non-
verbal signals may provide deeper insights into user intents [17, 18]. For example, if a user always
texts his friend via MESSAGE instead of EMAIL right after finding a good restaurant via YELP, such
behavioral pattern helps disambiguate the intended apps of the utterance “send to alex”.

Therefore, this paper proposes a feature-enriched matrix factorization (MF) model to learn low-
ranked latent features for SLU, where the unobserved patterns can be considered [19]. For the
single-turn request task, the model takes account of app descriptions, observed spoken utterances,
and automatically acquired domain knowledge to predict intents in a joint fashion. For the multi-turn
interaction task, the model incorporates contextual behavior history along with lexical observations
to improve intent prediction. We evaluate the performance by examining whether predicted apps can
satisfy users’ requests. The experiments show that our feature-enriched MF approach can model user
intents and allow an SDS to provide better responses for both unsupervised single-turn requests and
supervised multi-turn interactions. Our contributions are four-fold:

• This is among the first attempts to apply feature-enriched MF techniques for intent model-
ing, incorporating different sources of rich information (app description, semantic knowl-
edge, behavioral patterns);
• The feature-enriched MF approach jointly models spoken observations, available text in-

formation, and structured knowledge to infer user intents for single-turn requests, taking
hidden semantics into account;
• The behavioral patterns can be incorporated into the feature-enriched MF approach to

model user preference for personalized understanding in multi-turn interactions;
• Our experimental results indicate that feature-enriched MF approaches outperform most

strong baselines and achieve better intent prediction performance of both single-turn re-
quests and multi-turn interactions.

2 User Intent Prediction by Matrix Factorization

Under the app-oriented SDS, the main idea is to predict user intents along with corresponding apps.
For single-turn requests, given a user’s spoken utterance, how can an SDS dynamically support
functions corresponding to requests beyond predefined domains in an unsupervised manner [13]?
For multi-turn interactions, the goal is to predict the apps that are more likely to be used to handle
the user requests given input utterances and behavioral contexts, considering not only the desired
functionality but also user preference. We build an SLU component to model user intents: we frame
the task as a multi-class classification problem, where we estimate the probability of each intent/app
a given an utterance u, P (a | u), using a proposed feature-enriched MF approach.

An MF model considers the unobserved patterns and estimates their probabilities instead of viewing
them as negative, allowing it to model the implicit information [19]. Given the benefits brought
by MF techniques, including 1) modeling the noisy data, 2) modeling hidden semantics, and 3)
modeling the long-range dependencies between observations, in this work we apply an MF approach
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(b) The feature matrix for multi-turn interactions incorporates lexical and behavioral pat-
terns to build the personalized model.

Figure 1: Our MF method completes a partially-missing matrix to factorize the low-rank matrix
for implicit information modeling. Dark circles are observed facts, and shaded circles are latent
and inferred facts. Reasoning with MF considers latent semantics to predict intents based on rich
features of utterances.

to intent modeling for SDSs. First we define 〈x, y〉 as a fact, which refers to an entry in a matrix.
The input of our model is a set of observed facts O, and the observed facts for a given utterance is
denoted by {〈x, y〉 ∈ O}, where y can be a n-gram observation, a enriched semantic concept, or
an intended app. The goal of our model is to estimate, for a given utterance x and an app-related
intent y, the probability, P (Mx,y = 1), where Mx,y is a binary random variable that is true if and
only if y is the app for supporting the utterance x. Similarly, a series of exponential family models
are introduced to estimate the probability using a natural parameter θx,y and the logistic sigmoid
function:

P (Mx,y = 1 | θx,y) = σ(θx,y) =
1

1 + exp (−θx,y)
(1)

For single-turn requests and multi-turn interactions, we construct a matrixM as observed facts using
different types of enriched features, and the matrix can then be factorized by a matrix completion
technique with the assumption that the matrix is low-rank.

2.1 Feature-Enriched Matrix Construction

For each of single-turn request and multi-turn interaction tasks, we construct a feature-enriched
matrix below. The illustration of two matrices is shown in Figure 1. They are enriched with various
modalities. For unsupervised single-turn requests, the matrix in Figure 1 (a) incorporates word
observations, enriched semantics, and pseudo relevant apps for intent modeling. For supervised
multi-turn interactions, the matrix in Figure 1 (b) models word observations and contextual behavior
for intent prediction. Below we use a principle model, which contains three sets of information, low-
level spoken features (word observation matrix), high-level semantic features (enriched semantics
matrix), and intent results (intent matrix), to model user intents.
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2.1.1 Word Observation Matrix

A word observation matrix features with binary values based on n-gram word patterns. For single-
turn requests, two word observation matrices are built, where FAw is for textual app descriptions and
FUw is for spoken utterances. Each row in the matrix represents an app/utterance and each column
refers to an observed word pattern. In other words, FAw and FUw carry the basic word vectors for
all apps and all utterances respectively. Similarly, for multi-turn interactions, a word observation
matrix, FUw , is constructed for spoken utterances. The left-most column set in Figure 1 illustrates
the lexical features for the given utterances.

2.1.2 Enriched Semantics Matrix

For single-turn requests, considering to include open domain knowledge based on the user’s utter-
ance, we utilize distributed word representations to capture syntactic and semantic relationship for
acquiring domain knowledge [13, 9].

• Embedding-based semantics: We enrich the original utterances with semantically similar
words, where the similarity is measured by CBOW word embeddings trained on the app
descriptions [20, 13].

• Type-embedding-based semantics: The concept types are additionally included to further
expand the semantic information. For example, “play lady gaga’s bad romance” may con-
tain the types “singer” and “song” to improve semantic inference (domain-related cues
about music playing), where we detect all entity mention candidates in the given utterances
and use entity linking with Freebase and Wikipedia to mine entity types [13]. Then an en-
riched semantics matrix can be built as FUs , where each row is a utterance and each column
corresponds a semantic element shown in Fig. 1.

For multi-turn interactions, we enrich the utterance with contextual behaviors to incorporate behav-
ioral information into personalized and context-aware intent modeling. Figure 1 (b) illustrates the
enriched behavioral features as FUb , where the second utterance “tell vivian this is me in the lab” in-
volves “CAMERA” acquired from the previous turn “take this photo”. The behavioral history at turn
t, ht, can be formulated as {a1, ..., at−1}, which is the set of apps that were previously launched in
the ongoing dialogue. Note that multi-turn interaction uses supervised labels, where intended apps
are given during training.

2.1.3 Intent Matrix

To link the word patterns with the corresponding intent, an intended app matrix FAa is constructed,
where each column corresponds to launching a specific app. Hence, the entry is 1 when the app and
the intent correspond to each other, and 0 otherwise,

For unsupervised single-turn requests, to induce the user intent, we use a basic retrieval model for
returning the top K relevant apps for each utterance u, and treat them as pseudo intended apps [13].
Figure 1 (a) includes an example of utterance “i would like to contact alex”, where the utterance is
treated as a request to search for relevant apps such as “OUTLOOK” and “SKYPE”. Then we build an
app matrix FUa with binary values based on the top relevant apps, which also denotes intent features
for utterances. Note that we do not use any annotations, the app-related intents are returned by a
retrieval model and may contain some noise.

For personalized intent prediction on multi-turn interactions, the intent matrix can be directly ac-
quired from users’ app usage logs. FUa can be built and illustrated in the right part of matrix from
Figure 1 (b).

2.1.4 Integrated Model

As shown in Figure 1, we integrate word matrices, an enriched semantics matrix, and intent matrices
from both apps and utterances together for training the MF model. The integrated model for single-
turn requests can be formulated as

M = [
FA
w 0 FA

a

FU
w FU

s FU
a

]. (2)
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Table 1: User intent prediction for single-turn requests on mean average precision (MAP) using
different training features (%). LM is a baseline language modeling approach which models explicit
semantics.

Feature Matrix ASR Manual
LM w/ MF LM w/ MF

(a) Word Observation 25.1 29.2 (+16.2%) 26.1 30.4 (+16.4%)
(b) Word + Embedding-Based Semantics 32.0 34.2 (+6.8%) 33.3 33.3 (-0.2%)
(c) Word + Type-Embedding-Based Semantics 31.5 32.2 (+2.1%) 32.9 34.0 (+3.4%)

Similarly, the integrated matrix for multi-turn interactions can be built as M = [FUw FUs FUa ].
Hence, the relations among word patterns, domain knowledge, and behaviors can be automatically
learned from the integrated model in the joint fashion. The goal of the MF model is, for a given user
utterance, to predict the probability that the user intents to launch each app.

2.2 Optimization Procedure

With the built matrix, M , we can learn a model θ∗ that can best estimate the observed patterns by
parametrizing the matrix through weights and latent component vectors, where the parameters are
estimated by maximizing the log likelihood of observed data [21].

θ∗ =argmax
θ

∏
x∈X

P (θ |Mx) = argmax
θ

∏
x∈X

P (Mx | θ) · P (θ)

= argmax
θ

∑
x∈X

lnP (Mx | θ)− λθ =
∑
f+∈O

∑
f− 6∈O

lnσ(θf+ − θf−)− λθ,
(3)

where X is a set indicating row information. For single-turn requests, Mx is a row vector corre-
sponding either an app or an utterance; for multi-turn interactions, Mx corresponds to an utterance.
Here the assumption is that each row (app/utterance) is independent of others. To avoid treating
unobserved facts as designed negative facts and to complete the missing entries of the matrix, our
model can be factorized by a matrix completion technique with a low-rank assumption [22, 23],
where we use a variant of the ranking: giving observed true facts 〈x, y+〉 higher scores than un-
observed (true or false) facts 〈x, y−〉 from observations O constructed from M to parameterize the
given integrated model by performing an SGD update [23].

3 Experiments

For single-turn requests, total 195 utterances were collected for 13 domains, which are represen-
tatives of most frequently used goals, including “navigation”, “email writing”, “music playing”,
etc [13]. Using Google Speech API, the word error rate (WER) is 19.8% . The average word
count of an utterance is 6.8 for ASR outputs and 7.2 for manual transcripts, which suggests the
challenge of retrieving relevant apps given limited information in a request. The apps for returning
were collected from Google Play in November 2012. Each Android app in Google Play has its own
description page and metadata (name, number of downloads, content description, etc.) Total 1,881
apps with more than million downloads were considered. For evaluation, judges manually identified
apps from Google Play that could support the corresponding tasks. We used the judge-labeled apps
as ground truth for evaluating predicted apps and reported standard information retrieval metrics,
mean average precision (MAP).

For multi-turn interactions, we collected 533 multi-app spoken dialogs with 1607 utterances (about
3 user utterances per dialog). Among these dialogs, we have 455 multi-turn dialogs (82.3%), pro-
viding behavioral information. Using Google Speech API, the WER is 22.7%. For each subject the
(chronologically ordered) data were split 70% for training and 30% for testing in the experiments.
For each user, we built a personalized SLU model with his/her own training data. We also compute
MAP to evaluate the ranked app lists.

Table 1 and Table 2 present the results using different features before and after feature enrichment
and integration of the MF model on ASR and manual transcripts for different tasks. In single-
turn requests, LM is a baseline language modeling retrieval approach, where P (a | u) is estimated
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Table 2: User intent prediction for multi-turn interactions on mean average precision (MAP) using
different training features (%). MLR is a multi-class baseline for modeling explicit semantics.

Feature Matrix ASR Manual
MLR w/ MF MLR w/ MF

(d) Word Observation 52.1 52.7 (+1.2%) 55.5 55.4 (-0.2%)
(e) Behavioral Patterns 25.2 26.7 (+6.0%) 25.2 26.7 (+6.0%)
(f) Word Observation + Behavioral Patterns 53.9 55.7 (+3.3%) 56.6 57.7 (+1.9%)

based on the probability that user speaks the utterance u to make the request for launching the app
a [13]. In multi-turn interactions, MLR is a standard multinomial logistic regression model, where
P (a | u) is estimated according to the observed training data. It can be found that almost all results
are improved after combining with the MF model, where the scores from the baseline and the MF
model are averaged, indicating that the hidden semantics modeled by MF techniques helps estimate
the intent probability.

In single-turn requests, for ASR results, enriching semantics using embedding-based (row (b)) and
type-embedding-based semantics (row (c)) significantly improve the baseline performance (row (a))
using the basic retrieval model, where the MAP performance is from 25% to 31%. Then the perfor-
mance can be further improved by integrating MF to additionally model hidden semantics, where
row (b) achieves 34.2% on MAP. The reason why the type-embedding-based semantics (row (c))
does not perform better compared with embedding-based semantics (row (b)) is that the automati-
cally acquired type information appears to introduce noise, and row (c) is slightly worse than row
(b) for ASR results. For manually transcribed speech, the semantic enrichment procedure and MF
models also improve the performance. Different from ASR results, the best result for user intent pre-
diction is based on the features enriched with type-embedding-based semantics (row (c)), achieving
34.0% on MAP. The reason may be that manual transcripts are more likely to capture the correct
semantic information by word embeddings and have more consistent type information, allowing the
MF technique to model user intents better.

In multi-turn interactions, comparing between lexical features (row (d)) and behavioral features (row
(e)), lexical features capture more informative cues for intent prediction. For both ASR and man-
ual transcripts, enriching word features with behavioral patterns (row (f)) significantly outperform
the original lexical features alone. Additionally integrating with MF models further improves the
performance, achieving 55.7% and 57.7% on MAP for ASR and manual results respectively.

In sum, the results show that the rich features carried by app descriptions and utterance-related
contents can help intent prediction in single-turn requests using proposed model for most cases.
Also, the features involving behavioral patterns improve intent prediction in multi-turn interaction
through the proposed approach. The evaluation results also prove the effectiveness of our feature-
enriched MF models, which incorporate the enriched semantics and model the implicit semantics
along with explicit semantics in a joint fashion to significantly improve the performance of intent
prediction.

4 Conclusions

This paper proposes a feature-enriched matrix factorization approach to learn user intents based on
the automatically acquired rich features, in one case taking account into domain knowledge and in
another case behavioral patterns along with users’ utterances. In a smart-phone intelligent assistant
setting (e.g. requesting an app), the proposed model considers implicit semantics to enhance intent
inference given the noisy ASR inputs for single-turn request dialogues. The model is also able
to incorporate users’ behavioral patterns and their app preferences to better predict user intent in
multi-turn interactions. We believe that this approach allows systems to handle users’ open domain
intents when retrieving relevant apps that provide desired functionality either locally available or
by suggesting installation of suitable apps and doing so in an unsupervised way. The framework
can extend to incorporate personal behavior history and use it to improve a system’s ability to assist
users pursuing multi-app activities. In sum, the effectiveness of the feature-enriched MF model can
be shown in different domains, indicating good generality and providing a reasonable direction for
the future work.
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