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Abstract

We present initial methods for incorporating unstructured external textual infor-
mation into neural dialogue systems for predicting the next utterance of a user in
a two-party chat conversation. The main objective is to leverage additional infor-
mation about the topic of the conversation to improve the prediction accuracy. We
propose a simple method for extracting this knowledge, using a combination of
hashing and TF-IDF, and a way to use it for selecting the best next utterance of a
conversation, by encoding a vector representation with a recurrent neural network
(RNN). This is combined with an RNN encoding of the context and response of
the conversation in order to make a prediction. We perform a case study using the
recently released Ubuntu Dialogue Corpus, where the additional knowledge con-
sidered consists of the Ubuntu manpages. Preliminary results suggest that lever-
aging external knowledge sources in such a manner could lead to performance
improvements for predicting the next utterance.

1 Introduction

Several recent results have shown that neural networks provide powerful models for various modules
of spoken dialogue systems, from speech recognition [4, 5], to state tracking [7] and natural language
generation [19]. Deep learning approaches that are trainable end-to-end are beginning to surface in
the dialogue community [16, 15], which essentially combine parsing, dialogue planning and natural
language generation modules. Although initial results are promising, they still require significant
additions before replacing more conventional pipeline dialogue systems [8].

Simultaneously, much progress has been made towards incorporating a form of external memory into
various neural network architectures for sequence modeling. Models such as Memory Networks [20,
17] and Neural Turing Machines [6] store some part of their input in a memory, which is then
reasoned over in order to perform a variety of sequence to sequence tasks. These primarily use soft
attention mechanisms [1], which compute a weighted sum over each entry of the memory. While
this allows complex memory addressing as a function of the inputs, it is prohibitively expensive for
large memories, since the computational complexity is linear in the number of memory addresses.

We are interested in incorporating large unstructured sources of external knowledge into dialogue
systems. Compared to the above work on learning memories, we explore using visible (that is pre-
loaded and read-only) memories. Using external information is of great importance to dialogue
systems, particularly in the task-oriented setting (for example, helping users find movies or catch
their bus using corresponding schedules [14, 10]). Even chat-oriented dialogue systems whose pur-
pose is to entertain the user could benefit from leveraging external information, such as current news
articles or movie reviews, in order to better converse about real-world events. To our knowledge,
incorporating external information into a dialogue system has only been done if the knowledge base
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Figure 1: Diagram of the dual-encoder model.

is structured, and the dialogue system has been programmed to extract specific information from
that structure (e.g. using a fixed set of database queries). We review relevant work in Section 6.

In this paper, we extend a recently proposed neural architecture for selecting dialogue responses
from a list of candidate responses by incorporating unstructured sources of textual knowledge. The
architecture uses a simple combination of hashing and TF-IDF to quickly identify the most relevant
portions of text from the external knowledge source, based on the current context of the dialogue.
Three recurrent neural networks (RNNs) are trained: one to encode the selected external informa-
tion, one to encode the context of the conversation, and one to encode a response to the context.
Outputs of these modules are combined to produce the probability that the response was the ac-
tual next utterance given the context. We apply this framework to the Ubuntu Dialogue Corpus [9]
and look at the impact of incorporating the Ubuntu manpages as an external knowledge source, to
improve performance on the task of predicting the next utterance of the conversation.

2 Technical Background

2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a variant of neural networks that allow for time-delayed di-
rected cycles between units. RNNs are often described by ‘un-rolling’ these cycles and instantiating
a time-dependent internal, or hidden, state of the network ht. This state is updated at each time step
as a function of both the observed variables xt, and the hidden state from the previous time step
ht−1. Input-to-hidden (Wih) and hidden-to-hidden (Whh) parameter matrices are used to transform
respectively the input and the previous hidden state: ht = f(Whhht−1 +Wihxt), where f(·) is a
(typically) non-linear function.

RNNs can learn to model probability distributions over input sequences, by being trained to predict
the next symbol in the sequence. They have proven to be very useful for modeling a variety of
sequential data, and have in particular become the primary building block of many recent neural
language models [3, 16], which use RNNs as encoders and decoders.

2.2 The Dual-Encoder Model

Here we adopt the dual-encoder model used by Lowe et al. [9], illustrated in Figure 1. The model
scores potential context-response pairs to determine the probability that a certain response was the
actual next utterance, given the context of a conversation. The model consists of two RNNs with
tied weights, which are used to produce the embeddings for the context and response, c, r ∈ Rd,
respectively. This is done by feeding in the word embeddings, one at a time, into the respective
RNNs. At each step, the hidden state of the RNN is updated until the final input symbol. Intuitively,
the final hidden state can be thought of as a summary of the input sequence.

Using the final hidden states from both RNNs, the model calculates the probability that the response
r is the correct response given the context c (ie. y = 1):

p(y = 1 | c, r) = σ(c>Mr + b),

where the bias b and the matrix M ∈ Rd×d are parameters learned by the model. The first term
within the function can be thought of as a projection of the response into the context subspace
via the product c′ = Mr, and then taking the dot product between this ‘generated context’ c′
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and the actual context c. The result is converted to a probability with the sigmoid function. The
model is trained by minimizing the cross entropy of all labeled (context, response) pairs [21]: L =
−
∑

n log p(yn|cn, rn,M). Regularization can also be applied on the parameters of the model.

3 Model Architecture

3.1 Knowledge Retrieval from Unstructured Documents

Given the context of a conversation, we aim to leverage external knowledge. Our goal is to use in-
formation that is contained in large unstructured textual knowledge sources, which are separate from
the context of the conversation. Since we assume that the knowledge can be large, it is infeasible
to use mechanisms that require intensive computations on each knowledge item, such as the recent
soft-attention mechanisms [1]. Although there are a large number of possible methods that could
be devised, we propose a simple method that can be applied in several domains. We encourage
exploration of more complex memory addressing mechanisms.

We currently make use of the term frequency-inverse document frequency (TF-IDF) criteria [13] for
identifying which knowledge source to use. TF-IDF is standard in information retrieval, and can be
computed as:

tfidf(w, d,D) = f(w, d)× log
N

|{d ∈ D : w ∈ d}|
,

where f(w, d) indicates the number of times word w appeared in document d, N is the total number
of documents, and the denominator represents the number of documents in which the word w ap-
pears. In our model, we calculate the TF-IDF score by comparing the term frequency in the current
conversation with its frequency in a document in our knowledge source. This requires assuming that
the knowledge source is divided into a set of documents (e.g. Wikipages, or paragraphs of a techni-
cal manual.) We use TF-IDF to compute a score between the dialogue context and each document,
and choose the document, or a set of documents, with the highest score.

While TF-IDF gives us a way to select documents, it may be infeasible to calculate the TF-IDF
score over all documents at each turn of a conversation. Thus we incorporate hashing to facilitate
quick retrieval of plausible documents. We construct two hashtables: The first, which we refer to as
the ‘entity hashtable’, contains as keys important entities that could appear in the conversation, with
values being information corresponding to those entities. This could include, for example, actor
or movie names with their IMDB summaries, technical commands with their documentation, or
landmarks and restaurants with related Wikipedia pages or travel reviews. For any of these important
entities that appear in the context, the extracted knowledge is the concatenation of the values of the
entries in the entity hashtable.

If no match between the context and the entity hashtable is found, we search a second hashtable,
the ‘relation hashtable’. The keys here correspond to more common words that are related to the
important entities, which is done by extracting a subset of salient words from the descriptions of the
entities. Importantly, the values of the relation hashtable are keys (or lists of keys) from the entity
hashtable, e.g. the key ‘Chinese’ could have as value a list of Chinese restaurants, so long as the
description of these restaurants mentioned that they were Chinese. The list of extracted values from
the relation hashtable are treated as if they were present in the context of the conversation, and these
are used to search the entity hashtable. In this way, we can quickly extract knowledge for most
conversation contexts.

3.2 The Knowledge Encoder Model

We propose an extension of the dual-encoder model (Sec. 2.2) that can incorporate the information
extracted from the knowledge source as presented above to improve ability to select the next utter-
ance in a conversation. The model must compute the similarity between the response, as encoded by
an RNN, and a representation of the extracted knowledge, m, as encoded using another RNN with
untied weights. The objective function becomes: p(y = 1 | c, r) = σ(c>Mr +m>Nr + b), where
N ∈ Rd×d is another matrix of parameters learned by the model.

Similarly to the dual-encoder model, we can intuitively think of projecting the response into the
corresponding context and knowledge subspaces, with c′ = Mr and m′ = Nr. For a response to
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Figure 2: Diagram of the knowledge encoder model. c, r,m are the last hidden states from the
RNNs. ci, ri,mi are word vectors for the context, response and retrieved knowledge i < t. We
consider contexts up to a maximum of t = 160.

have a high probability of being the next utterance given some context, it has to either 1) logically
follow from the context (high c>c′), or 2) have information in common with the extracted knowledge
(high m>m′). A diagram representing the Knowledge Encoder model is shown in Figure 2.

4 Case Study: The Ubuntu Dialogue System

4.1 The Ubuntu Dialogue Corpus

We consider the task domain associated with the Ubuntu Dialogue Corpus [9]. This dataset, ex-
tracted from the Ubuntu IRC chat logs, consists of a chat stream where users ask and answer tech-
nical questions about Ubuntu. Although the channel is multi-party, a sequence of rules are used
to disentangle it into two-person dialogue (see [9] for more info). This results in a large corpus
of multi-turn technical dialogues, which could be useful for training dialogue systems for technical
support channels.

We focus on the task of ‘next utterance classification’ (NUC) [9]. Given the context of a conversa-
tion, a set of candidate answers is supplied: the ‘correct’ answer is the actual next utterance of the
conversation, while the ‘false’ answers are randomly drawn from elsewhere in the corpus. This is
more general than traditional question answering (QA), as the prediction is made based on the entire
conversation context, and the context does not have to include a question at all. Intuitively, models
that can easily select the next utterance given a context require a certain understanding of both the
context and response, as simple keyword matching gives only baseline performance. In practice,
these models can be used as re-ranking mechanisms for stochastic generative models [11, 18, 19], or
they can be used as a generative model themselves by extending the set of responses to encompass
the training set.

4.2 The Ubuntu Manpages

The Ubuntu Manpages refer to a collection of Unix and Linux manual pages, extracted from every
package of every supported version of Ubuntu. Manpages are self-contained reference documents
(packaged with the distribution) that provide information on various Ubuntu commands, toolkits,
and extensions. These manpages contain useful information for aiding with technical Ubuntu prob-
lems. We hypothesize that manpages can be successfully used as a source of external knowledge in
the NUC task.

The format of the manuals is a series of entries, each with the name of the command along with
a description of its purpose. The amount of information available per entry varies significantly, as
the subject of the entry can be both very specific (a niche command such as 411toppm), or can
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Input Context Retrieved Knowledge Candidate Responses
ok but back to the point, I guess I could download
a theme for the decorator only... __EOS__
if you get a metacity theme, thats what it is.
there’s nothing else *to* theme, its just that since
metacity doesnt have multiple decorators, theres
no need to give a more specific name to the themes
than metacity

this manual page documents briefly metacity .
metacity is a minimal x window manager aimed at
nontechnical users and is designed to integrate
well with the gnome desktop . metacity lacks
some features that may be expected by traditional
unix or other technical users; these users may want
to investigate other available window managers for
use with gnome or standalone

1) metacity theme includes info about
the border+title and the rest, I mean get
a theme only for the first part, then go to
some metacity theme in
gnome-appearance-properties, then
change the title look in one of its options
2) you will need to reinstall the nvidia
driver

Newbie question : are there any good graphical
tools for handling fat32 disk mounting in linux
?__EOS__
no __EOS__
ok ;) __EOS__
but you can tell ubuntu to mount fat32 at start up
so you dont have to think about it

baobab is able to scan either specific folders ( local
and remote ) or devices , in order to give the user a
tree representation including each directory size or
percentage in the branch . it also auto-detects any
mounted/unmounted device . a graphical
representation is also provided for any selected
folder .

1) yes, I know - but it sure would be nice
with a gui and some smooth icons rather
than poking around with fstab
2) why would he need an ssh server on
windows ?

Table 1: Example of the knowledge retrieval method for various contexts in the Ubuntu Dialogue
Corpus, along with two corresponding responses. “__EOS__" indicates the end of an utterance in
the context. Italic response is the actual next utterance given the context.

encompass many sub-commands (such as BusyBox). A common entry, in addition to the name and
description, will contain an ‘Options’ section with various sub-commands that can be used, along
with the author of the manpage and a ‘See Also’ section with other related commands. Some entries
will also have diagnostic information, example usages, and links to further web documentation. In
total for all of the downloaded manpages, there are approximately 5,000 entries, with an average of
approximately 190 lines and 10 paragraphs.

For knowledge extraction, we treat the name of the technical commands as the keys to the entity
hashtable, and their descriptions as the corresponding values. Each paragraph of the description
is considered a document for the purposes of TF-IDF. The words from the short ‘NAME’ section
(which has a one-sentence summary of the command) are used as keys to the relation hashtable.
Lists are restricted to be of 5 or fewer commands, and we filter the keys of the hashtable by removing
common English words. Since we limit the number of retrieved paragraphs to a maximum of 20, we
also search the relation hashtable in order of length of the key word, as longer word are more likely
to carry technical information.

We show one useful and one non-useful example of external knowledge use in Table 1, for examples
from the Ubuntu Dialogue Corpus. In the first example, the key word ‘metacity’ is identified, and a
description of the term is retrieved. Using this description gives a higher probability of selecting the
correct response (italics), as both contain references to ‘gnome’ which do not appear in the context.
In the second example, no command is found that matches the keys in the entity dictionary; the key
word ‘graphical’ is used to find the command ’Baobab’, which is a graphical toolkit. However, in
this case the users are not talking about Baobab, so the retrieved knowledge is not used.

Implementing document retrieval with hashing was critical in order to be able to train the model in
a reasonable amount of time. Speedups of approximately 200 times were observed, compared to
naïvely searching through the entire document with TF-IDF (from 4s to 0.02s per query).

5 Results

We present results in Table 2 on the next utterance classification task, using both the dual-encoder
(DE) model, the knowledge encoder (KE) model1, and a baseline model that directly computes the
TF-IDF between the context and each response. KE uses shared weights for all RNNs, while KE-
untied uses separate weights for encoding the external knowledge. Further, we pretrain KE-untied
as the DE model (ie. N = 0), and then fine-tune the weights. In other words, the model first learns
to predict the next utterance only given the context, and then learns to use the external memory for
cases it cannot otherwise solve.

We test on Recall@k metrics (denoted R@1 R@2, R@5). Here the agent is asked to select the k
most likely responses, and it is correct if the true response is among these k candidates. Our prelim-

1DE results differ slightly from the results in [9], as a different random initialization was used (results are
averaged between the two).
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Model 1 of 2 R@1 1 of 10 R@1 1 of 10 R@2 1 of 10 R@5
TF-IDF Baseline [9] 65.9% 41.0% 54.5% 70.8%
DE [9] 75.3% 38.7% 52.3% 79.8%
KE [Section 3.2] 73.2% 33.8% 48.7% 77.3%
KE-untied [Section 3.2] 77.4% 41.3% 55.4% 82.4%

Table 2: Results of the model on the Ubuntu Dialogue Corpus, using various recall measures for
binary (1 in 2) and 1 out of 10 (1 in 10) next utterance classification %.

inary results seem to indicate that using external knowledge can provide an increase of 2-3% over
the DE model. However, this is only slightly higher than the TF-IDF method; large improvements
are mostly seen with LSTM networks [9], which were not tested due to time constraints.

We use the same setup and hyperparameters as in [9]. For training, we have a 1:1 ratio between true
responses (flag = 1), and negative responses (flag=0) drawn randomly from elsewhere in the training
set. Word vectors are initialized using GloVe [12], and are fine-tuned during training. We train on
1,000,000 training examples, and use a validation set for early stopping. The optimal hyperparame-
ters for the regular RNN model from [9] were used.

6 Related Work

Task-oriented dialogue systems whose goal is to provide information to the user naturally make use
of external knowledge sources. For example, in the Let’s Go! dialogue system [14], the user requests
information about various bus arrival and departure times. Thus, a critical input to the model is the
actual bus schedule, which is used in order to generate the system’s utterances. Such examples are
abundant both in the literature and in practice. Recent work incorporates neural networks in order
to improve the performance of these models for state tracking [7, 22], speech recognition [4, 5],
and natural language generation [19]. Although these models could be seen as neural dialogue sys-
tems that have some external knowledge component, these knowledge sources are highly structured
and are only used to place hard constraints on the possible states of an utterance to be generated.
Furthermore, these structured external knowledge components require expensive maintenance, and
there is no guarantee that they contain all relevant information. With our model, any useful source
of textual knowledge can be incorporated in order to aid the prediction of the next utterance.

Our work is also related to question-answering systems, which extract answers from external knowl-
edge sources. However, these systems are generally unable to take into account dialogue context
when answering questions. It is beyond the scope of this paper to review these systems, but the
reader may find the recent neural network architectures for question-answering interesting [2, 21].

7 Discussion

Using external knowledge is critical for goal-oriented dialogue systems, and opens up many possibil-
ities for chat-oriented systems. We propose a simple method for both retrieving relevant information
from an unstructured textual knowledge source, and a way to incorporate this into a neural dialogue
system for predicting the next utterance of a conversation. Our results, while preliminary, suggest
that using external knowledge may be useful.

Significantly more complex models could be devised for both knowledge retrieval, and incorporation
into the prediction of the next utterance. For example, in the case where documents of the knowl-
edge source have overlapping information, information retrieval methods could be used (such as
clustering) for knowledge extraction, as well as methods from modern question answering systems.
Many reasonable variants of the objective function may be worth considering. Extracted information
could be used to condition a decoder RNN, leading to a fully generative model.

For future work, we plan to determine whether the performance improvements hold when imple-
menting the model with LSTM units. We will then investigate a more complex attention mechanism
for large input spaces, using distributed representations of the external knowledge, and implement a
dialogue model that uses this mechanism. This paper represents an initial attempt at incorporating
unstructured textual knowledge; we encourage further exploration in this area.
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