
Recurrent Neural Network Structured Output
Prediction for Spoken Language Understanding

Bing Liu, Ian Lane
Department of Electrical and Computer Engineering

Carnegie Mellon University
{liubing,lane}@cmu.edu

Abstract

Recurrent Neural Networks (RNNs) have been widely used for sequence modeling
due to their strong capabilities in modeling temporal dependencies. In this work,
we study and evaluate the effectiveness of using RNNs for slot filling, a key task
in Spoken Language Understanding (SLU), with special focus on modeling label
sequence dependencies. Recent work on slot filling using RNNs did not model la-
bel sequence dependencies explicitly. We propose to introduce label dependencies
in model training by feeding previous output label, using a sampling approach on
true and predicted labels, to the current sequence state. The revised RNN model
is evaluated on slot filling task using standard ATIS dataset. Our results show that
the proposed methods consistently outperform the baseline RNN system. Error
analysis illustrates clear advantages of learning output sequence dependencies in
RNN sequence modeling.

1 Introduction

Slot filling involves searching input text to fill in values for predefined slots in a reference knowledge
base [6, 16]. It is one of the key tasks in spoken language understanding. Slot filling can be framed
as a sequence labeling task, which maps an observation sequence x = {x1, . . . , xT } to a sequence of
labels y = {y1, . . . , yT }, where input and output sequence are of same length. Popular approaches
to solving sequence labeling problems include generative models such as Hidden Markov Models
(HMMs), and discriminative models such as Conditional Random Fields (CRFs) and Support Vector
Machines (SVMs). Recently, Recurrent Neural Networks (RNNs) showed promising performance in
speech recognition, language modeling and other sequence labeling tasks [5, 18]. RNNs’ feedback
nature and non-linear activation enable such models to learn sequence representations with complex
structure and over long distance, which are critical in sequence learning.

A number of discriminative models such as CRF [19] and SVM [9] have been applied to slot filling
tasks. In this work, we focus on applying RNNs to slot filling, with special attention on modeling
output label dependencies. Previous work on using RNNs for slot filling [12, 21] with Elman [17]
and Jordan [8] type models achieved favourable F1-scores comparing to CRF approach. These
models demonstrated RNNs’ advantages in feature representations by using fixed length continuous
word embedding and modeling long term word relations with recurrent connections. Local opti-
mization on output label yt following maximum likelihood criteria at each step t was performed
using input word features till current step xt1 and potentially future time steps with a defined context
window xt+wst+1 , where ws denotes the size of future context. Although sequence level optimization
was not addressed specifically, these RNN models still achieved reasonably good F1-measurement
on ATIS (Airline Travel Information Systems) benchmark.

Recent review [11] on using RNNs for slot filling discussed potential approaches in conducting
sequence level optimization, including using Viterbi decoding with slot language models and using

1



a combination of RNNs and CRF (Recurrent CRF) [20]. These approaches attempted to ameliorate
label bias problem [10] in sequence predictions. In this paper, we propose to model output label
conditional dependencies using a sampling approach with previous true and predicted labels, similar
to the scheduled sampling method proposed in [1]. Instead of only using previous true labels and the
summarized input in current state to maximize the likelihood of output state during training, using
samples from previous predicted label distribution help to make the model more robust by forcing it
to learn to handle its own mistakes.

The remainder of the paper is organized as follows. In section 2, we introduce the background
on using RNNs for slot filling. Related approaches in conducting sequence level optimization for
slot filling are also described. We present our approach in modeling structured output in section 3.
Section 4 discusses the experiment setup and result analysis on ATIS dataset. Section 5 gives the
conclusions and recommendations.

2 Background

2.1 RNNs for Slot Filling

RNNs use continuous word representations as slot filling model input. Distributed representation of
words in vector space has been applied to a number of natural language processing tasks [2, 4, 11].
Comparing to using word as atomic units, distributed word representation can better capture the
syntactic and semantic regularities in language [12]. One popular architecture for training such
distributed word representations was introduced in [14], where word vector representation can be
jointly learned with a statistical language model. Continuous bag-of-words (CBOW) and skip-gram
models were later introduced as efficient methods for learning high-quality distributed vector repre-
sentations using simple model architectures and very large data set [13].

Feed-forward neural networks using context window were first applied for sequence learning [2].
RNNs extend feed-forward neural networks by introducing recurrent connections. Such recurrent
connections enable RNNs to deal with sequence of variable length and learn long term dependencies.
RNN parameters are trained using Back-propagation Through Time (BPTT) considering influence
of past states through recurrent connections. Thus, the network is capable of capturing information
passed from previous states by maintaining and learning a summarized states of previous steps.
This enables RNNs to perform sequence prediction tasks with longer range comparing to standard
feed-forward neural networks that use input of fixed size cascaded context.

In Elman RNNs, the recurrent hidden layer state at time t can be represented as:

ht = f(Uxt +Wht−1) (1)

where U is the weight matrix between input layer and hidden layer, and W is the weight matrix for
the recurrent connections. f is the non-linear activation function. On output layer, softmax function
is applied to frame network output as valid probability distribution:

yt = softmax(V ht) (2)

where V is the weight matrix between hidden layer and output layer, and

softmax(zm) =
ezm

Σkezk
(3)

2.2 Sequence Level Optimizations

Elman RNN performs token level optimization as opposed to sequence level optimization. The
model produces locally optimized label prediction using input features without considering depen-
dencies between output labels. Thus, it is suboptimal to model sequence that with correlations
among output labels, which is typically the case in most sequence learning tasks. A number of
methods have been proposed to address such label bias problems [10]. Viterbi decoding with slot
language models and recurrent CRF are two of them that have been applied in recent slot filling
studies.

The slot language model approach [11] borrows similar idea from the speech community that uses a
weighted combination of different types of probability models to optimize the posterior probability.

2



In this approach, a trigram language model of output labels is built to model the state or label
transition probability. Observation likelihood is modeled using output probability distribution from
Elman RNNs by applying Bayes rule:

ŷ = arg max
y

P (y|x) (4)

= arg max
y

P (y)α × P (x|y) (5)

∼ arg max
y

P (y)α ×
∏
t

P (yt|xt1)

P (yt)
(6)

where x and y are the input and output sequences. The first term P (y) is modeled by the trigram
label language model, and the P (yt|xt1) is from RNNs output probability distribution. The weight
α is a tunable value representing the contribution from the label language model. Output sequence
with highest probability can then be searched via Viterbi decoding. It is reported in [11] that this
Viterbi search method produced 0.01 point F1-score increase on ATIS dataset, and larger increases
on a few other datasets.

Another approach proposed in doing sequence level optimization is the recurrent CRF method [20].
This method combines the feature representation power in RNNs and sequence level discriminative
capability of CRF. CRF objectives are used to jointly learn the transition probability and RNNs
parameters. CRF models the conditional probability of the output label sequence given input word
sequence by:

P (y|x) =
1

Z

T∏
t=1

exp(

M∑
m=1

λmhm(yt−1, yt, x
t+ws
t−ws)) (7)

where Z is the normalization constant, hm(yt−1, yt, x
t+ws
t−ws) are the feature representations of word

input and output labels between t − 1 and t. Influence from the previous and future input context
windows on yt are represented by xt+wst−ws, with left and right context size of ws. In recurrent CRF,
hm(yt−1, yt, x

t+ws
t−ws) decomposes to label transition feature hm(yt−1, yt) and label output feature

hm(yt, x
t+ws
t−ws). The latter is modeled by values in RNNs output layer before softmax activation,

which helps to ameliorate label bias problem according to [20]. This approach results in 0.28 point
F1-score improvement on ATIS dataset using words and named-entity information as reported in
their study.

3 Proposed Approach

We propose to optimize slot label sequence prediction by considering not only input sequences but
also label sequence from previous steps. Different from Jordan RNN architecture or hybrid Elman
and Jordan RNN architecture in which output label probabilities are fed to recurrent connections, a
fixed sized continuous vector representing one particular label is fed. These continuous vectors rep-
resenting possible output labels are trained together with other network parameters. During training,
the label to be fed to recurrent connections can be the previous true label, or a sampled label drawn
from previous predicted label distribution. We train the network to find the best parameter set θ that
maximizes the likelihood:

arg max
θ

T∏
t=1

P (yt|yt−1
1 ,x; θ) (8)

In this revised RNN, at each step the current word input, previous hidden state, and previous output
label are connected to current hidden state:

ht = f(Uxt +Wht−1 +Qy outt−1) (9)

where y outt−1 is the vector representing output label at time t − 1, and Q is the weight matrix
connecting output label vector and the hidden layer. Same as Elman RNNs, hidden layer is projected
to the output layer, and a softmax transformation is added to obtain the probability distribution for
the predicted label at time t.

yt = softmax(V ht) (10)

3



In Elman RNNs, the hidden layer at time step t carries information from all previous input sequence
xt1 via recurrent connection. In the revised model, output label information from y outt−1 is also
fed to ht at each time step t. Thus, at step t the label prediction yt takes into consideration of all
previous output labels and the input sequence.

During inference, given an input sequence x, we want to find the best label sequence y such that:

ŷ = arg max
y

P (y|x) (11)

True label is not available during inference and sample drawn from previous predicted label dis-
tribution is used. Decoding is performed with beam search similar to [3, 18]. At each time step,
each beam is expanded to all possible output labels, and only the top β beams are kept based on the
accumulated scores. The best label sequence is selected from the β beams at the last time step.

Figure 1: RNN with sampled label y out connected to hidden layer.

Figure 1 shows the revised RNN with sampled label y out connected to hidden layer. At time
step t, information from word input xt, previous hidden layer ht−1, and output label from previous
step y outt−1 are transferred to ht. During training, true label at time step t − 1 can be used as
y outt−1. However, during inference, true label is not available, and only the predicted label can be
used. This results in discrepancy on how the model is trained and is used during inference [1]. The
prediction power of RNN trained in this manner may not generalize well during inference. Error
made by wrongly predicted label in early stage of the sequence may be amplified significantly since
all following predictions use such wrong label information.

To introduce robustness in RNN training, we use a sampling approach that randomly decides
whether to use true label or predicted label from previous time step. We want to introduce some
randomness to the output label so that the RNN model can learn to handle the mistake made by
itself. The predicted label can be the label with highest probability (from softmax transformation
output), or a sampled label following label output probability distribution at t − 1. We used the
former approach in our study. In RNN training, we choose the true label at step t − 1 with proba-
bility Pi, and choose the predicted label at t− 1 with probability 1− Pi. In this work, we study the
impact of using different values of Pi on the RNN slot filling performance. Specifically, we study
the differences between using a constant Pi across entire training stage, and using a Pi value that
linearly decreases over training iterations.

4



4 Experiments

ATIS (Airline Travel Information Systems) dataset [7] is widely used in spoken language under-
standing research. The dataset contains audio recordings of people making flight reservations. Text
and corresponding named entities and semantic labels are also provided. In this experiment, only
word features are used in building RNN slot filling model.

The slot filling task training set contains 4978 utterances (56590 tokens) from ATIS-2 and ATIS-
3 corpora, and test set contains 893 utterances (9198 tokens) from ATIS-3 NOV93 and DEC94
datasets. This is the same corpus that was used in other related slot filling studies with ATIS dataset
[11, 20]. There are a total number of 127 distinct slot labels (including null label). Vocabulary size
is 572. Precision, recall, and F1-score were measured as evaluation matrics.

The network structure is as described in previous section. We used sigmoid function for non-linear
activation. To prevent the gradient from exploding, a clipping range between -5 to 5 is defined.
Dropout (dropout rate p = 0.2 on input nodes) and L2 regularization λ = 1e−7 were used to prevent
the RNNs from overfitting. However, we found the improvement brought by these regularization
methods were limited for ATIS slot filling task. To incorporate future context features, we used
context window approach with window size of 4 on both sides of current time step. During decoding,
we kept top 8 beams at each time step for beam search.

The Elman RNN model trained with task specific embedding and random initialization achieved
best F1-score of 94.52, advancing best score using CRF model 92.36 by large margin. RNNs using
Google News embedding [15] achieved best F1-score of 93.56 without fine-tuning on word embed-
dings. After fine tuning, F1-score increased to 94.65. This fine-tuned system was used as baseline
system for our study. For the numbers reported in below tables, we used Google News word embed-
ding to initialize the word vectors. Only word features in ATIS dataset were used for slot filling in
our study. Name-entities and intent information were not used.

Table 1: Performance Measurement on ATIS dataset (Word feature only)

Model Precision (%) Recall (%) F1-Score
CRF 93.12 91.61 92.36

Elman RNN baseline 94.87 94.43 94.65
RNN trained with true labels 95.17 94.40 94.78

RNN trained with sampled label
constant Pi = 0.80

95.24 94.54 94.89

RNN trained with sampled label
linearly deceasing Pi

95.27 94.47 94.87

First set of experiments applied constant Pi values over training iterations, therefore true label and
predicted label were used with fixed probability during the training stage. We experimented with a
fixed Pi values over iterations ranging from 0.20 to 1.0, and the corresponding system performance
was illustrated in Figure 2. X axis represents systems using different Pi values, and Y axis gives the
F1-score on ATIS test set. As can be seen from the results, all systems with output label feedback
connections outperformed the baseline RNN system. With fixed Pi value of 1.0, only true labels
were used in the output feedback connection. As discussed in section 3, system trained in this ap-
proach gained capability in modeling output sequence dependencies, but with discrepancy between
training and inference. The higher F1-score achieved with lower Pi values (e.g. Pi = 0.8) was con-
sistent with such analysis. When Pi values dropped further, predicted labels were more likely used
during RNNs training, and the F1-score started to decrease. However, even with very low Pi value,
the model still beat the baseline system.

A typical example of label prediction error that appeared in baseline system and was corrected
by the revised model is as below. Given a test sentence of “...on May seventeenth
one way with dinner”, the baseline system predicted corresponding output sequence as
“...O B-depart date.month name B-arrive date.day number B-round trip
I-round trip O B-meal description”, where the label for “seventeenth” was
predicted wrongly. Without modeling output label dependencies, the semantic label for
“seventeenth” can be hard to decide as it can either be related with departure or arrival.

5



Figure 2: F1-score with constant Pi over training iterations.

This error was avoided in the revised system when we modeled output label dependencies explicitly
with label feedback connection. By seeing “B-depart date.month name” as previous label,
the system was able to predict current label as “B-depart date.day number” instead of
“B-arrive date.day number” with high confidence.

We further studied RNNs that were trained with time varying Pi. As a system is more likely to
make prediction errors at the beginning stage of the training, we applied a linearly decreasing Pi
value for output label feedback connection. A minimum Pi value was defined for each experiment,
and Pi value dropped linearly from 1.0 to the minimum value defined along the training epochs.
Results of systems using different minimum Pi value were reported in Table 2. Again, all systems
beat the baseline RNN system consistently. Best F1-score 94.87 was achieved using minimum Pi
value of 0.65. However, systems with different Pi decay rate resulted in very similar performance in
this ATIS slot filling evaluation. Training logs revealed that training and test errors converged very
quickly during the initial 20+ training epochs. Further tuning started from a point where predicted
output label could be generated with reasonably low error rate. This might partially explain the
similar F1-scores achieved by systems using various minimum Pi value in this evaluation.

Table 2: Performance Measurement on ATIS dataset - with linearly decreasing Pi

Model Precision (%) Recall (%) F1-Score
RNN with Pi = 1.0→ 0.80 95.24 94.43 94.83
RNN with Pi = 1.0→ 0.65 95.27 94.47 94.87
RNN with Pi = 1.0→ 0.50 95.20 94.36 94.78
RNN with Pi = 1.0→ 0.35 95.24 94.43 94.83
RNN with Pi = 1.0→ 0.20 95.20 94.43 94.82

5 Conclusion

In this work, we studied using RNNs for SLU slot filling task, with particular attention on modeling
output sequence dependencies. Modeling structured output is vital to many sequence learning tasks.
We proposed to model slot label dependencies using a sampling approach, by feeding sampled
output label (true or predicted) back to the sequence state. We evaluated this approach in slot filling
task on ATIS dataset, and observed consistent performance gain over the baseline RNN system.
Error analysis showed clear advantage of learning output sequence dependencies in RNN model
training. Performance of a number of sampling approaches were also compared and discussed.
Further investigation of output label error propagation in the network memory is part of future work.
Moreover, it is worth exploring combining sampling strategy with other sequence level optimization
methods for enhanced sequence labeling capability.

6



References
[1] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence prediction

with recurrent neural networks. arXiv preprint arXiv:1506.03099, 2015.
[2] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model.

The Journal of Machine Learning Research, 3:1137–1155, 2003.
[3] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals. Listen, attend and spell. arXiv preprint

arXiv:1508.01211, 2015.
[4] R. Collobert and J. Weston. A unified architecture for natural language processing: Deep

neural networks with multitask learning. In Proceedings of the 25th international conference
on Machine learning, pages 160–167. ACM, 2008.

[5] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural
networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 6645–6649. IEEE, 2013.

[6] Y. He and S. Young. A data-driven spoken language understanding system. In Automatic
Speech Recognition and Understanding, 2003. ASRU’03. 2003 IEEE Workshop on, pages 583–
588. IEEE, 2003.

[7] C. T. Hemphill, J. J. Godfrey, and G. R. Doddington. The atis spoken language systems pilot
corpus. In Proceedings, DARPA speech and natural language workshop, pages 96–101, 1990.

[8] M. I. Jordan. Serial order: A parallel distributed processing approach. Advances in psychology,
121:471–495, 1997.

[9] T. Kudo and Y. Matsumoto. Chunking with support vector machines. In Proceedings of the
second meeting of the North American Chapter of the Association for Computational Linguis-
tics on Language technologies, pages 1–8. Association for Computational Linguistics, 2001.

[10] J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. 2001.

[11] G. Mesnil, Y. Dauphin, K. Yao, Y. Bengio, L. Deng, D. Hakkani-Tur, X. He, L. Heck, G. Tur,
D. Yu, et al. Using recurrent neural networks for slot filling in spoken language understanding.
Audio, Speech, and Language Processing, IEEE/ACM Transactions on, 23(3):530–539, 2015.

[12] G. Mesnil, X. He, L. Deng, and Y. Bengio. Investigation of recurrent-neural-network archi-
tectures and learning methods for spoken language understanding. In INTERSPEECH, pages
3771–3775, 2013.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013.

[14] T. Mikolov, S. Kombrink, L. Burget, J. H. Černockỳ, and S. Khudanpur. Extensions of recur-
rent neural network language model. In Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on, pages 5528–5531. IEEE, 2011.

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing
systems, pages 3111–3119, 2013.

[16] C. Raymond and G. Riccardi. Generative and discriminative algorithms for spoken language
understanding. In INTERSPEECH, pages 1605–1608, 2007.

[17] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. Signal Processing,
IEEE Transactions on, 45(11):2673–2681, 1997.

[18] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pages 3104–3112, 2014.

[19] Y.-Y. Wang and A. Acero. Discriminative models for spoken language understanding. In
INTERSPEECH, 2006.

[20] K. Yao, B. Peng, G. Zweig, D. Yu, X. Li, and F. Gao. Recurrent conditional random field for
language understanding. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on, pages 4077–4081. IEEE, 2014.

[21] K. Yao, G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu. Recurrent neural networks for language
understanding. In INTERSPEECH, pages 2524–2528, 2013.

7


	Introduction
	Background
	RNNs for Slot Filling
	Sequence Level Optimizations

	Proposed Approach
	Experiments
	Conclusion

